Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Nessus Network Auditing -

Nessus Network Auditing (eBook)

Russ Rogers (Herausgeber)

eBook Download: EPUB
2011 | 2. Auflage
448 Seiten
Elsevier Science (Verlag)
978-0-08-055865-3 (ISBN)
Systemvoraussetzungen
47,49 inkl. MwSt
(CHF 46,40)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The Updated Version of the Bestselling Nessus Book.

This is the ONLY Book to Read if You Run Nessus Across the Enterprise
Ever since its beginnings in early 1998, the Nessus Project has attracted security researchers from all walks of life. It continues this growth today. It has been adopted as a de facto standard by the security industry, vendor, and practitioner alike, many of whom rely on Nessus as the foundation to their security practices. Now, a team of leading developers have created the definitive book for the Nessus community.

* Perform a Vulnerability Assessment
Use Nessus to find programming errors that allow intruders to gain unauthorized access.

* Obtain and Install Nessus
Install from source or binary, set up up clients and user accounts, and update your plug-ins.

* Modify the Preferences Tab
Specify the options for Nmap and other complex, configurable components of Nessus.

* Understand Scanner Logic and Determine Actual Risk
Plan your scanning strategy and learn what variables can be changed.

* Prioritize Vulnerabilities
Prioritize and manage critical vulnerabilities, information leaks, and denial of service errors.

* Deal with False Positives
Learn the different types of false positives and the differences between intrusive and nonintrusive tests.

* Get Under the Hood of Nessus
Understand the architecture and design of Nessus and master the Nessus Attack Scripting Language (NASL).

* Scan the Entire Enterprise Network
Plan for enterprise deployment by gauging network bandwith and topology issues.

* Nessus is the premier Open Source vulnerability assessment tool, and has been voted the most popular Open Source security tool several times.

* The first edition is still the only book available on the product.

* Written by the world's premier Nessus developers and featuring a forword by the creator of Nessus, Renaud Deraison.
The Updated Version of the Bestselling Nessus Book. This is the ONLY Book to Read if You Run Nessus Across the Enterprise. Ever since its beginnings in early 1998, the Nessus Project has attracted security researchers from all walks of life. It continues this growth today. It has been adopted as a de facto standard by the security industry, vendor, and practitioner alike, many of whom rely on Nessus as the foundation to their security practices. Now, a team of leading developers have created the definitive book for the Nessus community.Perform a Vulnerability AssessmentUse Nessus to find programming errors that allow intruders to gain unauthorized access.Obtain and Install NessusInstall from source or binary, set up up clients and user accounts, and update your plug-ins.Modify the Preferences TabSpecify the options for Nmap and other complex, configurable components of Nessus.Understand Scanner Logic and Determine Actual RiskPlan your scanning strategy and learn what variables can be changed.Prioritize VulnerabilitiesPrioritize and manage critical vulnerabilities, information leaks, and denial of service errors.Deal with False PositivesLearn the different types of false positives and the differences between intrusive and nonintrusive tests.Get Under the Hood of NessusUnderstand the architecture and design of Nessus and master the Nessus Attack Scripting Language (NASL).Scan the Entire Enterprise NetworkPlan for enterprise deployment by gauging network bandwith and topology issues. - Nessus is the premier Open Source vulnerability assessment tool, and has been voted the "e;most popular"e; Open Source security tool several times. - The first edition is still the only book available on the product. - Written by the world's premier Nessus developers and featuring a foreword by the creator of Nessus, Renaud Deraison.

Front Cover 1
Adsorption of Metals by Geomedia 4
Copyright Page 5
Contents 6
Contributors 20
Preface 26
Chapter 1. Adsorption of Metals by Geomedia: Data Analysis, Modeling, Controlling Factors, and Related Issues 28
I. Introduction 29
II. Data Treatment and Presentation 33
III. Adsorption Models 38
IV. Artifact Effects 64
V. Variables 67
VI. Conclusions 87
References 88
Chapter 2. Uranium vI Adsorption on Model Minerals: Controlling Factors and Surface Complexation Modeling 102
I. Introduction 102
II. Aqueous Speciation and Sorption Modeling 104
III. Experimental 107
IV. Uranium Sorption on Model Minerals in NaNO3/CO2 Systems 110
V. Effect of Trace Impurities on Uranium Sorption by Kaolinite 115
VI. Effect of Complexing Ligands 118
VII. Summary 122
References 123
Chapter 3. Uranium VI Sorption onto Selected Mineral Surfaces: Key Geochemical Parameters 126
I. Introduction 127
II. Experimental Procedure 128
III. Experimental Results and Discussion 132
IV. Surface Complexation Model 145
V. Conclusions 154
References 155
Chapter 4. Studies of Neptunium V Sorption on Quartz, Clinoptilolite, Montmorillonite, and a-Alumina 158
I. Introduction 159
II. Experimental Procedure 160
III. Results and Discussion 162
IV. Conclusions 172
References 173
Chapter 5. Factors Affecting Trivalent f-element Adsorption to an Acidic Sandy Soil 176
I. Introduction 177
II. Materials and Methods 178
III. Results and Discussion 181
IV. Conclusions 189
References 189
Chapter 6. Lead Sorption, Chemically Enhanced Desorption, and Equilibrium Modeling in an Iron-Oxide-Coated Sand and Synthetic Groundwater System 192
I. Introduction 193
II. Materials and Methods 194
III. Results and Discussion 196
VI. Conclusion 205
References 206
Chapter 7. Uranium Sorption onto Natural Sands as a Function of Sediment Characteristics and Solution pH 208
I. Introduction 209
II. Experimental 209
III. Results and Discussion 211
IV. Conclusions 218
References 219
Chapter 8. Intraparticle Diffusion of Metal Contaminants in Amorphous Oxide Minerals 220
I. Introduction 220
II. Diffusion Processes 222
III. Conclusions 232
References 232
Chapter 9. Copper Sorption Kinetics and Sorption Hysteresis in Two Oxide-Rich Soils (Oxisols): Effect of Phosphate Pretreatment 236
I. Introduction 237
II. Materials and Methods 240
III. Results 245
IV. Discussion 250
References 253
Chapter 10. Influence of pH, Metal Concentration, and Soil Component Removal on Retention of Pb and Cu by an lUitic Soil 256
I. Introduction 257
II. Materials and Methods 259
III. Results and Discussions 263
IV. Concluding Remarks 277
References 278
Chapter 11. Immobilization of Pb by Hydroxylapatite 282
I. Introduction 282
II. Materials and Methods 284
III. Results and Discussion 287
IV. Conclusion 302
References 302
Chapter 12. Effect of Solid: Liquid Ratio on the Sorption of Sr2+ and Cs+ on Bentonite 304
I. Introduction 305
II. Materials and Methods 306
III. Results and Discussion 309
IV. Summary and Conclusions 315
References 315
Chapter 13. Adsorption of UVI and Citric Acid on Goethite, Gibbsite, and Kaolinite: Comparing Results for Binary and Ternary Systems 318
I. Background 319
II. Experimental Setup 321
III. Results and Discussion 326
IV. Conclusions 339
References 340
Chapter 14. Surface and Solution Speciation of Ag I in a Heterogeneous Ferrihydrite-Solution System with Thiosulfate 344
I. Environmental Chemistry and the Fate of Silver 345
II. Silver and Silver-Ligand Complex Sorption to Minerals 346
III. Application of the Triple-Layer Surface Complexation Model 346
IV. Detailing Pathways using Spectroscopy 356
References 357
Chapter 15. Extended X-Ray Absorption Fine Structure (EXAFS) Analysis of Aqueous Sr II Ion Sorption at Clay–Water Interfaces 360
I. Introduction 361
II. Experimental 363
III. Results and Discussion 366
IV. Conclusions 372
References 372
Chapter 16. Structure and Composition of UraniumvI Sorption Complexes at the Kaolinite-Water Interface 376
I. Introduction 377
II. Background 377
III. Experimental 382
IV. Results 386
V. Discussion 390
VI. Conclusions 394
References 395
Chapter 17. Surface Charge and Metal Sorption to Kaolinite 398
I. Introduction 398
II. Experimental Methods 399
III. Kaolinite Surface Charge 400
IV. Metal Sorption 406
V. Conclusions 407
References 408
Chapter 18. Molecular Models of Cesium Sorption on Kaolinite 410
I. Introduction 410
II. Kaolinite Structure and Surface Hydrolysis 411
III. Theoretical Basis for Computer Simulations 412
IV. Results and Discussion 416
V. Conclusions 424
References 425
Chapter 19. Sorption of Molybdenum on Oxides, Clay Minerals, and Soils: Mechanisms and Models 428
I. Introduction 429
II. Materials and Methods 430
III. Results and Discussion 438
IV. Summary 450
V. References 451
Chapter 20. Nonequilibrium and Nonlinear Sorption during Transport of Cadmium, Nickel, and Strontium through Subsurface Soils 454
I. Introduction 455
II. Materials and Methods 455
III. Results and Discussion 459
IV. Conclusions 468
References 469
Chapter 21. Fluorescence Quenching and Aluminum Adsorption to Organic Substances 472
I. Introduction 472
II. Equations to Interpret Fluorescence Measurements 475
III. Experimental Method 479
IV. Results 480
V. Conclusions 489
References 490
Chapter 22. Modeling of Competitive Ion Binding to Heterogeneous Materials with Affinity Distributions 494
I. Introduction 495
II. Variable Concentration for a Single Component 496
III. Variable Concentrations for Two Components 500
IV. Discussion 506
References 508
Chapter 23. Ion Binding to Humic Substances: Measurements, Models, and Mechanisms 510
I. Introduction 511
II. Basic Charging Behavior of Humic Substances 512
III. Heterogeneity Analysis 522
IV. pH-Dependent Metal Ion Binding 526
V. Conclusions 543
References 544
Chapter 24. Predictive Double-Layer Modeling of Metal Sorption in Mine-Drainage Systems 548
I. Introduction 549
II. Sorption Experiments and Modeling with Natural Materials 550
III. Sorption Modeling at Diverse Mine-Drainage Sites 564
IV. Predictive Sorption Modeling for Mitigation and Remediation 567
V. Conclusions 571
References 571
Epilogue: Priorities for Future Metal Adsorption Research 576
I. Integration and Synthesis of Existing Data 576
II. System Characterization 577
III. Principal Adsorbents 578
IV. Multimetal Data on Individual Adsorbents 579
V. Loading 580
VI. Surface Area, Site Density, and Metal Adsorption Density 580
VII. Time Dependency 581
VIII. Additivity of Multiple Adsorbents 581
IX. Solids Concentration Effect 582
X. Nature of Surface Complexes and Mechanistic Modeling 582
XI. Field-Scale Applications 583
XII. Summary 584
References 584
Appendix 588
Index 598

Contributors


The numbers in parentheses indicate the pages on which the authors’ contributions begin.

Michael G. Almendarez     (131), Center for Nuclear Waste Regulatory Analyses, Southwest Research Institute, San Antonio, Texas 78238

Paul Anderson     (193), Department of Chemical and Environmental Engineering, Illinois Institute of Technology, Chicago, Illinois 60616

Sharon J. Anderson     (209), Department of Crop and Soil Sciences, Michigan State University, East Lansing, Michigan 488241

Janick F. Artiola     (427), Soil, Water and Environmental Science, University of Arizona, Tucson, Arizona 85721

Lisa Axe     (193), Department of Civil Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102

Mohammad F. Azizian     (165), Department of Civil, Construction, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331

M.F. Benedetti     (483), URA CNRS-1762, Laboratoire de Géochimie et Métallogénie, Université Curie, Paris, France

F. Paul Bertetti     (99, 131), Cambrian Systems, Inc., San Antonio, Texas 78238

Michal Borkovec     (467), Institute of Terrestrial Ecology, Swiss Federal Institute of Technology, Schlieren, Switzerland

Patrick V. Brady     (371, 383), Sandia National Laboratories, Albuquerque, New Mexico 87123

BrownGordon E., Jr.     (349), Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305

Mark L. Brusseau     (427), Soil, Water and Environmental Science, University of Arizona, Tucson, Arizona 85721

A.L. Bryce     (149), University of Georgia, Savannah River Ecology Laboratory, Aiken, South Carolina2

Chia-Chen Chen     (333), Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109

Sue B. Clark     (149), University of Georgia, Savannah River Ecology Laboratory, Aiken, South Carolina3

Randall T. Cygan     (371, 383), Sandia National Laboratories, Albuquerque, New Mexico 87123

Harold S. Forster     (401), USDA-ARS, U.S. Salinity Laboratory, Riverside, California 92507

J. Gariboldi     (149), University of Georgia, Savannah River Ecology Laboratory, Aiken, South Carolina

Sabine Goldberg     (401), USDA-ARS, U.S. Salinity Laboratory, Riverside, California 92507

Luiz Roberto G. Guilherme     (209), Department of Crop and Soil Sciences, Michigan State University, East Lansing, Michigan 488244

Kim F. Hayes     (333), Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109

Harold B. Hume     (277), AECL, Whiteshell Laboratories, Pinawa, Manitoba R0E 1L0, Canada

Everett A. Jenne     (1, 549), Battelle, Pacific Northwest National Laboratory, Richland, Washington 993525
5 Retired

D.G. Kinniburgh     (483), Department of Soil Science and Plant Nutrition, Wageningen Agricultural University, The Netherlands6
6 On leave from the British Geological Survey, Wallingford, United Kingdom

L.K. Koopal     (483), Department of Physical and Colloid Chemistry, Wageningen Agricultural University, The Netherlands

James R. Kramer     (445), Department of Geology, McMaster University, Hamilton, Ontario, Canada L8S 4M1

Valérie Laperche     (255), School of Natural Resources, Ohio State University, Columbus, Ohio 43210

James O. Leckie     (291, 317), Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305

Jinhe Li     (291), Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305

A.D. Lueking     (149), University of Georgia, Savannah River Ecology Laboratory, Aiken, South Carolina7
7 Present address: Department of Civil Engineering, University of Michigan, Ann Arbor, Michigan 48109

G.R. Lumpkin     (75), Australian Nuclear Science and Technology Organisation, Menai, NSW 2234, Australia

Donald L. Macalady     (521), Department of Chemistry and Geochemistry, Colorado School of Mines, Denver, Colorado

Elaine M. MacDonald     (229), Department of Civil Engineering, McGill University, Montreal, Canada

Travis McLing     (181), Idaho National Engineering and Environmental Laboratory, Idaho Falls, Idaho 83415

Kathryn L. Nagy     (371, 383), Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309

Peter O. Nelson     (165), Department of Civil, Construction, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331

Colin G. Ong     (317), Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305

Dennis W. Oscarson     (277), AECL, Whiteshell Laboratories, Pinawa, Manitoba R0E 1L0, Canada

Roberto T. Pabalan     (99, 131), Center for Nuclear Waste Regulatory Analyses, Southwest Research Institute, San Antonio, Texas 78238

Charalambos Papelis     (333), Desert Research Institute, Water Resources Center, University and Community College System of Nevada, Las Vegas, Nevada 89119

George A. Parks     (349), Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305

T.E. Payne     (75), Australian Nuclear Science and Technology Organisation, Menai, NSW 2234, Australia

Geoffrey S. Plumlee     (521), U.S. Geological Survey, Denver, Colorado 80225

James D. Prikryl     (99), Center for Nuclear Waste Regulatory Analyses, Southwest Research Institute, San Antonio, Texas, 78238

H. Swantje Quarder     (181), Department of Chemistry, Idaho State University, Pocatello, Idaho 83209

James F. Ranville     (521), Department of Chemistry and Geochemistry, Colorado School of Mines, Denver, Colorado

George Redden     (291), Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305

Jeffrey Rosentreter     (181), Department of Chemistry, Idaho State University, Pocatello, Idaho 83209

Ursula Rusch     (467), Institute of Terrestrial Ecology, Swiss Federal Institute of Technology, Schlieren, Switzerland

S.M. Serkiz     (149), Westinghouse Savannah River Company, Savannah River Technology Center, Aiken, South Carolina

D. Scott Smith     (445), Department of Geology, McMaster University, Hamilton, Ontario, Canada L8S 4M1

Kathleen S. Smith     (521), U.S. Geological Survey, Denver, Colorado 80225

Robert W. Smith     (181), Idaho National Engineering and...

Erscheint lt. Verlag 13.10.2011
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Informatik Netzwerke Sicherheit / Firewall
ISBN-10 0-08-055865-8 / 0080558658
ISBN-13 978-0-08-055865-3 / 9780080558653
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das umfassende Handbuch

von Michael Kofler; Klaus Gebeshuber; Peter Kloep …

eBook Download (2022)
Rheinwerk Computing (Verlag)
CHF 48,75