Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Multi-Camera Networks -

Multi-Camera Networks (eBook)

Principles and Applications
eBook Download: PDF
2009 | 1. Auflage
624 Seiten
Elsevier Science (Verlag)
978-0-08-087800-3 (ISBN)
Systemvoraussetzungen
108,35 inkl. MwSt
(CHF 105,85)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
  • The first book, by the leading experts, on this rapidly developing field with applications to security, smart homes, multimedia, and environmental monitoring ,
  • Comprehensive coverage of fundamentals, algorithms, design methodologies, system implementation issues, architectures, and applications
  • Presents in detail the latest developments in multi-camera calibration, active and heterogeneous camera networks, multi-camera object and event detection, tracking, coding, smart camera architecture and middleware

This book is the definitive reference in multi-camera networks. It gives clear guidance on the conceptual and implementation issues involved in the design and operation of multi-camera networks, as well as presenting the state-of-the-art in hardware, algorithms and system development. The book is broad in scope, covering smart camera architectures, embedded processing, sensor fusion and middleware, calibration and topology, network-based detection and tracking, and applications in distributed and collaborative methods in camera networks. This book will be an ideal reference for university researchers, R&D engineers, computer engineers, and graduate students working in signal and video processing, computer vision, and sensor networks.

Hamid Aghajan is a Professor of Electrical Engineering (consulting) at Stanford University. His research is on multi-camera networks for smart environments with application to smart homes, assisted living and well being, meeting rooms, and avatar-based communication and social interactions. He is Editor-in-Chief of Journal of Ambient Intelligence and Smart Environments, and was general chair of ACM/IEEE ICDSC 2008.

Andrea Cavallaro is Reader (Associate Professor) at Queen Mary, University of London (QMUL). His research is on target tracking and audiovisual content analysis for advanced surveillance and multi-sensor systems. He serves as Associate Editor of the IEEE Signal Processing Magazine and the IEEE Trans. on Multimedia, and has been general chair of IEEE AVSS 2007, ACM/IEEE ICDSC 2009 and BMVC 2009.



  • The first book, by the leading experts, on this rapidly developing field with applications to security, smart homes, multimedia, and environmental monitoring ,

  • Comprehensive coverage of fundamentals, algorithms, design methodologies, system implementation issues, architectures, and applications

  • Presents in detail the latest developments in multi-camera calibration, active and heterogeneous camera networks, multi-camera object and event detection, tracking, coding, smart camera architecture and middleware

  • - The first book, by the leading experts, on this rapidly developing field with applications to security, smart homes, multimedia, and environmental monitoring- Comprehensive coverage of fundamentals, algorithms, design methodologies, system implementation issues, architectures, and applications- Presents in detail the latest developments in multi-camera calibration, active and heterogeneous camera networks, multi-camera object and event detection, tracking, coding, smart camera architecture and middleware This book is the definitive reference in multi-camera networks. It gives clear guidance on the conceptual and implementation issues involved in the design and operation of multi-camera networks, as well as presenting the state-of-the-art in hardware, algorithms and system development. The book is broad in scope, covering smart camera architectures, embedded processing, sensor fusion and middleware, calibration and topology, network-based detection and tracking, and applications in distributed and collaborative methods in camera networks. This book will be an ideal reference for university researchers, R&D engineers, computer engineers, and graduate students working in signal and video processing, computer vision, and sensor networks. Hamid Aghajan is a Professor of Electrical Engineering (consulting) at Stanford University. His research is on multi-camera networks for smart environments with application to smart homes, assisted living and well being, meeting rooms, and avatar-based communication and social interactions. He is Editor-in-Chief of Journal of Ambient Intelligence and Smart Environments, and was general chair of ACM/IEEE ICDSC 2008. Andrea Cavallaro is Reader (Associate Professor) at Queen Mary, University of London (QMUL). His research is on target tracking and audiovisual content analysis for advanced surveillance and multi-sensor systems. He serves as Associate Editor of the IEEE Signal Processing Magazine and the IEEE Trans. on Multimedia, and has been general chair of IEEE AVSS 2007, ACM/IEEE ICDSC 2009 and BMVC 2009. - The first book, by the leading experts, on this rapidly developing field with applications to security, smart homes, multimedia, and environmental monitoring- Comprehensive coverage of fundamentals, algorithms, design methodologies, system implementation issues, architectures, and applications- Presents in detail the latest developments in multi-camera calibration, active and heterogeneous camera networks, multi-camera object and event detection, tracking, coding, smart camera architecture and middleware

    Front Cover 1
    Multi-Camera Networks 4
    Copyright Page 5
    Table of Contents 6
    Foreword 18
    Preface 22
    Part 1: Multi-Camera Calibration and Topology 30
    Chapter 1. Multi-View Geometry for Camera Networks 32
    1.1 Introduction 32
    1.2 Image Formation 33
    1.2.1 Perspective Projection 33
    1.2.2 Camera Matrices 34
    1.2.3 Estimating the Camera Matrix 36
    1.3 Two-Camera Geometry 37
    1.3.1 Epipolar Geometry and Its Estimation 39
    1.3.2 Relating the Fundamental Matrix to the Camera Matrices 40
    1.3.3 Estimating the Fundamental Matrix 41
    1.4 Projective Transformations 43
    1.4.1 Estimating Projective Transformations 45
    1.4.2 Rectifying Projective Transformations 46
    1.5 Feature Detection and Matching 47
    1.6 Multi-Camera Geometry 49
    1.6.1 Affine Reconstruction 49
    1.6.2 Projective Reconstruction 51
    1.6.3 Metric Reconstruction 51
    1.6.4 Bundle Adjustment 53
    1.7 Conclusions 54
    1.7.1 Resources 54
    References 55
    Chapter 2. Multi-View Calibration, Synchronization, and Dynamic Scene Reconstruction 58
    2.1 Introduction 58
    2.2 Camera Network Calibration and Synchronization 60
    2.2.1 Epipolar Geometry from Dynamic Silhouettes 63
    2.2.2 Related Work 63
    2.2.3 Camera Network Calibration 68
    2.2.4 Computing the Metric Reconstruction 71
    2.2.5 Camera Network Synchronization 71
    2.2.6 Results 73
    2.3 Dynamic Scene Reconstruction from Silhouette Cues 78
    2.3.1 Related Work 79
    2.3.2 Probabilistic Framework 81
    2.3.3 Automatic Learning and Tracking 90
    2.3.4 Results and Evaluation 93
    2.4 Conclusions 100
    References 101
    Chapter 3. Actuation-Assisted Localization of Distributed Camera Sensor Networks 106
    3.1 Introduction 106
    3.2 Methodology 109
    3.2.1 Base Triangle 109
    3.2.2 Large-Scale Networks 110
    3.2.3 Bundle Adjustment Refinement 112
    3.3 Actuation Planning 113
    3.3.1 Actuation Strategies 113
    3.3.2 Actuation Termination Rules 114
    3.4 System Description 114
    3.4.1 Actuated Camera Platform 115
    3.4.2 Optical Communication Beaconing 116
    3.4.3 Network Architecture 116
    3.5 Evaluation 117
    3.5.1 Localization Accuracy 117
    3.5.2 Node Density 119
    3.5.3 Latency 121
    3.6 Conclusions 122
    References 122
    Chapter 4. Building an Algebraic Topological Model of Wireless Camera Networks 124
    4.1 Introduction 124
    4.2 Mathematical Background 126
    4.2.1 Simplicial Homology 126
    4.2.2 Example 127
    4.2.3 Cech Theorem 128
    4.3 The Camera and the Environment Models 129
    4.4 The CN-Complex 130
    4.5 Recovering Topology: 2D Case 132
    4.5.1 Algorithms 133
    4.5.2 Simulation in 2D 135
    4.6 Recovering Topology: 2.5D Case 137
    4.6.1 Mapping from 2.5D to 2D 138
    4.6.2 Building the CN-Complex 138
    4.6.3 Experimentation 139
    4.7 Conclusions 143
    References 143
    Chapter 5. Optimal Placement of Multiple Visual Sensors 146
    5.1 Introduction 146
    5.1.1 Related Work 147
    5.1.2 Organization 149
    5.2 Problem Formulation 149
    5.2.1 Definitions 149
    5.2.2 Problem Statements 150
    5.2.3 Modeling a Camera’s Field of View 150
    5.2.4 Modeling Space 152
    5.3 Approaches 153
    5.3.1 Exact Algorithms 153
    5.3.2 Heuristics 157
    5.3.3 Random Selection and Placement 159
    5.4 Experiments 160
    5.4.1 Comparison of Approaches 161
    5.4.2 Complex Space Examples 163
    5.5 Possible Extensions 165
    5.6 Conclusions 166
    References 166
    Chapter 6. Optimal Visual Sensor Network Configuration 168
    6.1 Introduction 169
    6.1.1 Organization 170
    6.2 Related Work 170
    6.3 General Visibility Model 171
    6.4 Visibility Model for Visual Tagging 173
    6.5 Optimal Camera Placement 176
    6.5.1 Discretization of Camera and Tag Spaces 176
    6.5.2 MIN_CAM: Minimizing the Number of Cameras for Target Visibility 177
    6.5.3 FIX_CAM: Maximizing Visibility for a Given Number of Cameras 178
    6.5.4 GREEDY: An Algorithm to Speed Up BIP 180
    6.6 Experimental Results 181
    6.6.1 Optimal Camera Placement Simulation Experiments 181
    6.6.2 Comparison with Other Camera Placement Strategies 187
    6.7 Conclusions and Future Work 189
    References 190
    Part 2: Active and Heterogeneous Camera Networks 192
    Chapter 7. Collaborative Control of Active Cameras in Large-Scale Surveillance 194
    7.1 Introduction 194
    7.2 Related Work 195
    7.3 System Overview 197
    7.3.1 Planning 197
    7.3.2 Tracking 197
    7.4 Objective Function for PTZ Scheduling 199
    7.5 Optimization 200
    7.5.1 Asynchronous Optimization 200
    7.5.2 Combinatorial Search 202
    7.6 Quality Measures 202
    7.6.1 View Angle 202
    7.6.2 Target–Camera Distance 205
    7.6.3 Target–Zone Boundary Distance 205
    7.6.4 PTZ Limits 206
    7.6.5 Combined Quality Measure 206
    7.7 Idle Mode 207
    7.8 Experiments 207
    7.9 Conclusions 215
    References 215
    Chapter 8. Pan-Tilt-Zoom Camera Networks 218
    8.1 Introduction 218
    8.2 Related Work 219
    8.3 Pan-Tilt-Zoom Camera Geometry 221
    8.4 PTZ Camera Networks with Master–Slave Configuration 222
    8.4.1 Minimal PTZ Camera Model Parameterization 223
    8.5 Cooperative Target Tracking 224
    8.5.1 Tracking Using SIFT Visual Landmarks 225
    8.6 Extension to Wider Areas 227
    8.7 The Vanishing Line for Zoomed Head Localization 229
    8.8 Experimental Results 232
    8.9 Conclusions 237
    References 238
    Chapter 9. Multi-Modal Data Fusion Techniques and Applications 242
    9.1 Introduction 242
    9.2 Architecture Design in Multi-Modal Systems 243
    9.2.1 Logical Architecture Design 244
    9.2.2 Physical Architecture Design 246
    9.3 Fusion Techniques for Heterogeneous Sensor Networks 250
    9.3.1 Data Alignment 250
    9.3.2 Multi-Modal Techniques for State Estimation and Localization 252
    9.3.3 Fusion of Multi-Modal Cues for Event Analysis 258
    9.4 Applications 259
    9.4.1 Surveillance Applications 260
    9.4.2 Ambient Intelligence Applications 260
    9.4.3 Video Conferencing 263
    9.4.4 Automotive Applications 263
    9.5 Conclusions 263
    References 264
    Chapter 10. Spherical Imaging in Omnidirectional Camera Networks 268
    10.1 Introduction 268
    10.2 Omnidirectional Imaging 269
    10.2.1 Cameras 269
    10.2.2 Projective Geometry for Catadioptric Systems 270
    10.2.3 Spherical Camera Model 272
    10.2.4 Image Processing on the Sphere 274
    10.3 Calibration of Catadioptric Cameras 276
    10.3.1 Intrinsic Parameters 276
    10.3.2 Extrinsic Parameters 278
    10.4 Multi-Camera Systems 279
    10.4.1 Epipolar Geometry for Paracatadioptric Cameras 279
    10.4.2 Disparity Estimation 281
    10.5 Sparse Approximations and Geometric Estimation 285
    10.5.1 Correlation Estimation with Sparse Approximations 285
    10.5.2 Distributed Coding of 3D Scenes 287
    10.6 Conclusions 290
    References 291
    Part 3: Multi-View Coding 294
    Chapter 11. Video Compression for Camera Networks: A Distributed Approach 296
    11.1 Introduction 296
    11.2 Classic Approach to Video Coding 297
    11.3 Distributed Source Coding 301
    11.3.1 Slepian-Wolf Theorem 301
    11.3.2 A Simple Example 303
    11.3.3 Channel Codes for Binary Source DSC 304
    11.3.4 Wyner-Ziv Theorem 306
    11.4 From DSC to DVC 307
    11.4.1 Applying DSC to Video Coding 307
    11.4.2 PRISM Codec 309
    11.4.3 Stanford Approach 311
    11.4.4 Remarks 314
    11.5 Applying DVC to Multi-View Systems 317
    11.5.1 Extending Mono-View Codecs 318
    11.5.2 Remarks on Multi-View Problems 320
    11.6 Conclusions 321
    References 321
    Chapter 12. Distributed Compression in Multi-Camera Systems 324
    12.1 Introduction 324
    12.2 Foundations of Distributed Source Coding 325
    12.3 Structure and Properties of the Plenoptic Data 328
    12.4 Distributed Compression of Multi-View Images 330
    12.5 Multi-Terminal Distributed Video Coding 335
    12.6 Conclusions 336
    References 337
    Part 4: Multi-Camera Human Detection, Tracking, Pose and Behavior Analysis 340
    Chapter 13. Online Learning of Person Detectors by Co-Training from Multiple Cameras 342
    13.1 Introduction 342
    13.2 Co-Training and Online Learning 345
    13.2.1 Co-Training 345
    13.2.2 Boosting for Feature Selection 346
    13.3 Co-Training System 348
    13.3.1 Scene Calibration 349
    13.3.2 Online Co-Training 350
    13.4 Experimental Results 353
    13.4.1 Test Data Description 354
    13.4.2 Indoor Scenario 354
    13.4.3 Outdoor Scenario 357
    13.4.4 Resources 358
    13.5 Conclusions and Future Work 361
    References 361
    Chapter 14. Real-Time 3D Body Pose Estimation 364
    14.1 Introduction 364
    14.2 Background 365
    14.2.1 Tracking 366
    14.2.2 Example-Based Methods 367
    14.3 Segmentation 368
    14.4 Reconstruction 370
    14.5 Classifier 373
    14.5.1 Classifier Overview 373
    14.5.2 Linear Discriminant Analysis 373
    14.5.3 Average Neighborhood Margin Maximization 374
    14.6 Haarlets 376
    14.6.1 3D Haarlets 376
    14.6.2 Training 377
    14.6.3 Classification 380
    14.6.4 Experiments 380
    14.7 Rotation Invariance 381
    14.7.1 Overhead Tracker 382
    14.7.2 Experiments 385
    14.8 Results and Conclusions 386
    References 388
    Chapter 15. Multi-Person Bayesian Tracking with Multiple Cameras 392
    15.1 Introduction 392
    15.1.1 Key Factors and Related Work 393
    15.1.2 Approach and Chapter Organization 397
    15.2 Bayesian Tracking Problem Formulation 398
    15.2.1 Single-Object 3D State and Model Representation 399
    15.2.2 The Multi-Object State Space 400
    15.3 Dynamic Model 400
    15.3.1 Joint Dynamic Model 400
    15.3.2 Single-Object Dynamic Model 402
    15.4 Observation Model 404
    15.4.1 Foreground Likelihood 404
    15.4.2 Color Likelihood 404
    15.5 Reversible-Jump MCMC 407
    15.5.1 Human Detection 408
    15.5.2 Move Proposals 408
    15.5.3 Summary 411
    15.6 Experiments 411
    15.6.1 Calibration and Slant Removal 411
    15.6.2 Results 412
    15.7 Conclusions 414
    References 416
    Chapter 16. Statistical Pattern Recognition for Multi-Camera Detection, Tracking, and Trajectory Analysis 418
    16.1 Introduction 418
    16.2 Background Modeling 420
    16.3 Single-Camera Person Tracking 422
    16.3.1 The Tracking Algorithm 423
    16.3.2 Occlusion Detection and Classification 427
    16.4 Bayesian-Competitive Consistent Labeling 429
    16.5 Trajectory Shape Analysis for Abnormal Path Detection 433
    16.5.1 Trajectory Shape Classification 436
    16.6 Experimental Results 438
    References 441
    Chapter 17. Object Association Across Multiple Cameras 444
    17.1 Introduction 444
    17.2 Related Work 446
    17.2.1 Multiple Stationary Cameras with Overlapping Fields of View 447
    17.2.2 Multiple Stationary Cameras with Nonoverlapping Fields of View 448
    17.2.3 Multiple Pan-Tilt-Zoom Cameras 448
    17.3 Inference Framework 449
    17.4 Evaluating an Association Using Appearance Information 449
    17.4.1 Estimating the Subspace of BTFs Between Cameras 450
    17.5 Evaluating an Association Using Motion Information 451
    17.5.1 Data Model 451
    17.5.2 Maximum Likelihood Estimation 453
    17.5.3 Simulations 455
    17.5.4 Real Sequences 457
    17.6 Conclusions 459
    References 460
    Chapter 18. Video Surveillance Using a Multi-Camera Tracking and Fusion System 464
    18.1 Introduction 464
    18.2 Single-Camera Surveillance System Architecture 468
    18.3 Multi-Camera Surveillance System Architecture 469
    18.3.1 Data Sharing 469
    18.3.2 System Design 469
    18.3.3 Cross-Camera Calibration 471
    18.3.4 Data Fusion 475
    18.4 Examples 478
    18.4.1 Critical Infrastructure Protection 478
    18.4.2 Hazardous Lab Safety Verification 480
    18.5 Testing and Results 481
    18.6 Future Work 482
    18.7 Conclusions 483
    References 483
    Chapter 19. Composite Event Detection in Multi-Camera and Multi-Sensor Surveillance Networks 486
    19.1 Introduction 487
    19.2 Related Work 488
    19.3 Spatio-Temporal Composite Event Detection 490
    19.3.1 System Infrastructure 490
    19.3.2 Event Representation and Detection 492
    19.3.3 Event Description Language 494
    19.3.4 Primitive Events and User Interfaces 494
    19.4 Composite Event Search 497
    19.4.1 IBM Smart Surveillance Solution 498
    19.4.2 Query-Based Search and Browsing 498
    19.5 Case Studies 501
    19.5.1 Application: Retail Loss Prevention 501
    19.5.2 Application: Tailgating Detection 503
    19.5.3 Application: False Positive Reduction 505
    19.6 Conclusions and Future Work 506
    References 506
    Part 5: Smart Camera Networks: Architecture, Middleware, and Applications 510
    Chapter 20. Toward Pervasive Smart Camera Networks 512
    20.1 Introduction 512
    20.2 The Evolution of Smart Camera Systems 514
    20.2.1 Single Smart Cameras 515
    20.2.2 Distributed Smart Cameras 516
    20.2.3 Smart Cameras in Sensor Networks 517
    20.3 Future and Challenges 519
    20.3.1 Distributed Algorithms 520
    20.3.2 Dynamic and Heterogeneous Network Architectures 521
    20.3.3 Privacy and Security 521
    20.3.4 Service Orientation and User Interaction 522
    20.4 Conclusions 522
    References 523
    Chapter 21. Smart Cameras for Wireless Camera Networks: Architecture Overview 526
    21.1 Introduction 526
    21.2 Processing in a Smart Camera Network 527
    21.2.1 Centralized Processing 527
    21.2.2 Distributed Processing 529
    21.3 Smart Camera Architecture 530
    21.3.1 Sensor Modules 530
    21.3.2 Processing Module 531
    21.3.3 Communication Modules 533
    21.4 Example Wireless Smart Cameras 534
    21.4.1 MeshEye 534
    21.4.2 CMUcam3 535
    21.4.3 WiCa 536
    21.4.4 CITRIC 536
    21.5 Conclusions 536
    References 537
    Chapter 22. Embedded Middleware for Smart Camera Networks and Sensor Fusion 540
    22.1 Introduction 540
    22.2 Smart Cameras 541
    22.3 Distributed Smart Cameras 542
    22.3.1 Challenges of Distributed Smart Cameras 543
    22.3.2 Application Development for Distributed Smart Cameras 544
    22.4 Embedded Middleware for Smart Camera Networks 544
    22.4.1 Middleware Architecture 544
    22.4.2 General-Purpose Middleware 546
    22.4.3 Middleware for Embedded Systems 546
    22.4.4 Specific Requirements of Distributed Smart Cameras 547
    22.5 The Agent-Oriented Approach 548
    22.5.1 From Objects to Agents 548
    22.5.2 Mobile Agents 549
    22.5.3 Code Mobility and Programming Languages 549
    22.5.4 Mobile Agents for Embedded Smart Cameras 550
    22.6 An Agent System for Distributed Smart Cameras 551
    22.6.1 DSCAgents 551
    22.6.2 Decentralized Multi-Camera Tracking 555
    22.6.3 Sensor Fusion 559
    22.7 Conclusions 562
    References 563
    Chapter 23. Cluster-Based Object Tracking by Wireless Camera Networks 568
    23.1 Introduction 568
    23.2 Related Work 570
    23.2.1 Event-Driven Clustering Protocols 570
    23.2.2 Distributed Kalman Filtering 573
    23.3 Camera Clustering Protocol 575
    23.3.1 Object Tracking with Wireless Camera Networks 575
    23.3.2 Clustering Protocol 577
    23.4 Cluster-Based Kalman Filter Algorithm 583
    23.4.1 Kalman Filter Equations 583
    23.4.2 State Estimation 587
    23.4.3 System Initialization 589
    23.5 Experimental Results 589
    23.5.1 Simulator Environment 590
    23.5.2 Testbed Implementation 595
    23.6 Conclusions and Future Work 597
    References 598
    Outlook 602
    Index 608

    Erscheint lt. Verlag 25.4.2009
    Sprache englisch
    Themenwelt Sachbuch/Ratgeber
    Informatik Grafik / Design Digitale Bildverarbeitung
    Mathematik / Informatik Informatik Netzwerke
    Technik Bauwesen
    Technik Elektrotechnik / Energietechnik
    Technik Nachrichtentechnik
    ISBN-10 0-08-087800-8 / 0080878008
    ISBN-13 978-0-08-087800-3 / 9780080878003
    Haben Sie eine Frage zum Produkt?
    PDFPDF (Adobe DRM)

    Kopierschutz: Adobe-DRM
    Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
    Details zum Adobe-DRM

    Dateiformat: PDF (Portable Document Format)
    Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

    Systemvoraussetzungen:
    PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
    eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
    Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
    Geräteliste und zusätzliche Hinweise

    Buying eBooks from abroad
    For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

    Mehr entdecken
    aus dem Bereich
    Discover the smart way to polish your digital imagery skills by …

    von Gary Bradley

    eBook Download (2024)
    Packt Publishing (Verlag)
    CHF 29,30
    Explore powerful modeling and character creation techniques used for …

    von Lukas Kutschera

    eBook Download (2024)
    Packt Publishing (Verlag)
    CHF 42,20
    Generate creative images from text prompts and seamlessly integrate …

    von Margarida Barreto

    eBook Download (2024)
    Packt Publishing (Verlag)
    CHF 31,65