Nicht aus der Schweiz? Besuchen Sie lehmanns.de

In Situ Bioremediation of Perchlorate in Groundwater (eBook)

Hans F. Stroo, C. Herb Ward (Herausgeber)

eBook Download: PDF
2008 | 2009
XLVI, 248 Seiten
Springer New York (Verlag)
978-0-387-84921-8 (ISBN)

Lese- und Medienproben

In Situ Bioremediation of Perchlorate in Groundwater -
Systemvoraussetzungen
53,49 inkl. MwSt
(CHF 52,25)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
In the late 1970s and early 1980s, our nation began to grapple with the legacy of past disposal practices for toxic chemicals. With the passage in 1980 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), commonly known as Superfund, it became the law of the land to remediate these sites. The U. S. Department of Defense (DoD), the nation's largest industrial organization, also recognized that it too had a legacy of contaminated sites. Historic operations at Army, Navy, Air Force, and Marine Corps facilities, ranges, manufacturing sites, shipyards, and depots had resulted in widespread contamination of soil, groundwater, and sediment. While Superfund began in 1980 to focus on remediation of heavily contaminated sites largely abandoned or neglected by the private sector, the DoD had already initiated its Installation Restoration Program in the mid 1970s. In 1984, the DoD began the Defense Environmental Restoration Program (DERP) for contaminated site assessment and remediation. Two years later, the U. S. Congress codified the DERP and directed the Secretary of Defense to carry out a concurrent program of research, development, and demonstration of innovative remediation technologies. As chronicled in the 1994 National Research Council report, 'Ranking Hazardous-Waste Sites for Remedial Action', our early estimates on the cost and suitability of existing technologies for cleaning up contaminated sites were wildly optimistic. Original estimates, in 1980, projected an average Superfund cleanup cost of a mere $3.

H. F. Stroo - Dr. Stroo is a Principal Technical Advisor with HydroGeoLogic, Inc. He has a Ph.D. in Soil Science from Cornell University, and over 20 years of experience in the assessment and remediation of contaminated soil and groundwater. He has provided technical support to SERDP/ESTCP in the development and evaluation of innovative remediation technologies for over 10 years, particularly in the advancement of in situ technologies.

C. H. Ward - Dr. Ward has had a 41-year career in basic and applied research on chemical transport and fate in environmental media and remediation technology development for cleanup of fuel hydrocarbons and chlorinated compounds. He is a science and environmental technology consultant and advisor to government (EPA, DoD, DOE) and industry. He was the Director of the EPA-sponsored National Center for Ground Water Research for 18 years, the Superfund University Training Institute for 8 years, and the DoD-sponsored Advanced Applied (environmental) Technology Development Facility for 7 years. He is the Founding Chair of the Department of Environmental Science and Engineering at Rice University and has published over 200 scientific and technical papers and journal articles and 28 books and monographs on environmental remediation, remediation technology development, and sustainability. Dr. Ward is a registered professional engineer in the state of Texas and a Board Certified Environmental Engineer by the American Academy of Environmental Engineers


In the late 1970s and early 1980s, our nation began to grapple with the legacy of past disposal practices for toxic chemicals. With the passage in 1980 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), commonly known as Superfund, it became the law of the land to remediate these sites. The U. S. Department of Defense (DoD), the nation's largest industrial organization, also recognized that it too had a legacy of contaminated sites. Historic operations at Army, Navy, Air Force, and Marine Corps facilities, ranges, manufacturing sites, shipyards, and depots had resulted in widespread contamination of soil, groundwater, and sediment. While Superfund began in 1980 to focus on remediation of heavily contaminated sites largely abandoned or neglected by the private sector, the DoD had already initiated its Installation Restoration Program in the mid 1970s. In 1984, the DoD began the Defense Environmental Restoration Program (DERP) for contaminated site assessment and remediation. Two years later, the U. S. Congress codified the DERP and directed the Secretary of Defense to carry out a concurrent program of research, development, and demonstration of innovative remediation technologies. As chronicled in the 1994 National Research Council report, "e;Ranking Hazardous-Waste Sites for Remedial Action"e;, our early estimates on the cost and suitability of existing technologies for cleaning up contaminated sites were wildly optimistic. Original estimates, in 1980, projected an average Superfund cleanup cost of a mere $3.

H. F. Stroo – Dr. Stroo is a Principal Technical Advisor with HydroGeoLogic, Inc. He has a Ph.D. in Soil Science from Cornell University, and over 20 years of experience in the assessment and remediation of contaminated soil and groundwater. He has provided technical support to SERDP/ESTCP in the development and evaluation of innovative remediation technologies for over 10 years, particularly in the advancement of in situ technologies. C. H. Ward – Dr. Ward has had a 41-year career in basic and applied research on chemical transport and fate in environmental media and remediation technology development for cleanup of fuel hydrocarbons and chlorinated compounds. He is a science and environmental technology consultant and advisor to government (EPA, DoD, DOE) and industry. He was the Director of the EPA-sponsored National Center for Ground Water Research for 18 years, the Superfund University Training Institute for 8 years, and the DoD-sponsored Advanced Applied (environmental) Technology Development Facility for 7 years. He is the Founding Chair of the Department of Environmental Science and Engineering at Rice University and has published over 200 scientific and technical papers and journal articles and 28 books and monographs on environmental remediation, remediation technology development, and sustainability. Dr. Ward is a registered professional engineer in the state of Texas and a Board Certified Environmental Engineer by the American Academy of Environmental Engineers

In SituBioremediation of Perchlorate in Groundwater 2
Series Title Page 3
Copyright Page 4
Preface 6
About The Editors 10
About The Authors 11
External Reviewers 17
Acronyms and Abbreviations 18
Unit Conversion Table 21
Glossary1 22
Table of Contents 29
List of Figures 35
List of Tables 38
Chapter 1 40
In Situ Bioremediation of Perchlorate In Groundwater: An Overview 40
1.1 Introduction 40
1.2 How Did Perchlorate Become Such A Problem? 41
1.2.1 Perchlorate Properties and Behavior in the Subsurface 41
1.2.2 Production and Disposal 42
1.2.2.1 History of Use 42
1.2.2.2 Disposal Practices 43
1.2.3 Regulatory History 43
1.2.4 Evolution of Analytical Capabilities 44
1.2.5 Evolution of Toxicological Understanding 45
1.2.5.1 Magnitude of the Problem 46
1.3 How Can In Situ Bioremediation Help Solve the Perchlorate Problem? 46
1.3.1 Treatment Technology Overview 46
1.3.2 Why Use In Situ Bioremediation? 48
References 49
Chapter 2 53
Development of In Situ Bioremediation Technologies for Perchlorate 53
2.1 Introduction 53
2.2 Early Discoveries 53
2.3 Analytical Methods and Pilot Programs 54
2.4 Ubiquitous Occurrence of Perchlorate Degraders 55
2.5 Field Demonstrations 56
2.6 Bioremediation Strategies 57
2.7 Remediation of Perchlorate in Soil-The New Challenge 59
2.8 The Challenges Ahead 62
Acknowledgements 63
References 64
Chapter 3 90
Principles of Perchlorate Treatment 90
3.1 Introduction 90
3.2 Abiotic Remediation Processes 90
3.2.1 Ion Exchange 90
3.2.1.1 Non-Selective Resins 91
3.2.1.2 Selective Resins 91
3.2.1.3 Advanced Regeneration Technologies 91
3.2.1.4 Activated Carbon 92
3.2.1.5 Potential In Situ Applications 93
3.2.2 Abiotic Reduction Technologies 93
3.2.2.1 Chemical Reduction 93
3.2.2.2 Electrochemical Reduction 94
3.2.2.3 Other Abiotic Technologies 95
3.2.3 Overview of Abiotic Processes 95
3.3 Biological Remediation Processes 95
3.3.1 General Characteristics of DPRB 96
3.3.2 Diversity of DPRB 97
3.3.3 Environmental Factors Controlling DPRB Activity 97
3.3.4 Summary 99
3.4 Challenges Associated with Microbial Perchlorate Reduction 100
3.4.1 Biofouling and Electron Donor Selection 100
3.4.1.1 Stimulation of Undesirable Organisms 100
3.4.1.2 Establishment of Nonproductive TEAPs 101
3.5 The Tools Available for Predicting and Monitoring Microbial Perchlorate Reduction 103
3.5.1 Most Probable Number Counts 104
3.5.2 Probes to Specific Groups of Perchlorate-Reducing Organisms 105
3.5.3 Biomarkers for all DPRB 105
3.5.4 Immunoprobes Specific for DPRB 106
3.5.5 Use of Stable Isotopes to Identify Perchlorate Source and Monitor Degradation 106
3.6 Enrichment, Isolation, and Maintenanceof Dprb 107
3.6.1 Direct Isolation 107
3.6.2 Culture Maintenance 108
3.7 Conclusions 108
References 109
Chapter 4 66
Perchlorate Sources, Source Identification and Analytical Methods 66
4.1 Introduction 66
4.2 Sources of Perchlorate 66
4.2.1 Anthropogenic Sources 67
4.2.1.1 Rocket Propellant 67
4.2.1.2 Road Flares 67
4.2.1.3 Fireworks 67
4.2.1.4 Blasting Agents and Explosives 68
4.2.1.5 Sodium Chlorate 69
4.2.1.6 Bleach (Hypochlorite) 70
4.2.1.7 Perchloric Acid 71
4.2.2 Natural Sources of Perchlorate 71
4.2.2.1 Atmospheric Origin of Perchlorate 71
4.2.2.2 Chilean Nitrate 72
4.2.2.3 Other Natural Mineral Sources 72
4.3 Distinguishing Synthetic From Natural Perchlorate Using Stable Isotope Analysis 73
4.3.1 Stable Isotope Analysis 73
4.3.2 Stable Isotope Methods for Perchlorate 74
4.3.2.1 Sample Preparation and Analysis 74
4.3.2.2 Isotopic Results to Date 75
4.4 Analytical Methods for Perchlorate Analysis 79
4.4.1 DoD-Approved Analytical Methods 79
4.4.1.1 Usepa Methods 6850 (Hplc/Esi/Ms) and 6860 (Ic/Esi/Ms) 79
4.4.1.2 Usepa Method 331.0-Liquid Chromatography Electrospray Ionization Mass Spectrometry 79
4.4.1.3 USEPA Method 332.0-Ion Chromatography with Suppressed Conductivity and Electrospray Ionization Mass Spectrometry 80
4.4.2 Other Analytical Methods for Perchlorate 81
4.4.2.1 USEPA Method 314.0-Ion Chromatography 82
4.4.2.2 USEPA Method 314.1-Inline Column Concentration/Matrix Elimination Ion Chromatography with Suppressed Conductivity Detection 83
4.4.2.3 USEPA Method 9058-Ion Chromatography with Chemical Suppression Conductivity Detection 83
4.5 Site Characterization For Perchlorate Treatment 84
4.6 Summary 85
References 85
Chapter 5 115
Alternatives For In Situ Bioremediation of Perchlorate 115
5.1 Introduction 115
5.2 Technology Selection Process 117
5.2.1 In Situ Bioremediation 117
5.2.2 Active Treatment 118
5.2.3 Semi-Passive Treatment 120
5.2.4 Passive Treatment 121
5.3 Decision Guidelines 121
5.3.1 Ability to Meet Management Objectives 122
5.3.1.1 Costs 122
5.3.1.2 Speed 123
5.3.1.3 Reliability 123
5.3.1.4 Disruption of Site Activities 123
5.3.1.5 Flexibility 124
5.3.2 Problematic Site Conditions 124
5.4 Summary 124
References 125
Chapter 6 127
Active Bioremediation 127
6.1 Background and General Approach 127
6.2 When to Consider an Active Treatment System 128
6.3 Treatment System Configurations 129
6.3.1 Groundwater Extraction and Reinjection (ER) 129
6.3.2 Horizontal Flow Treatment Wells (HFTWs) 130
6.4 System Applications 131
6.4.1 Biobarriers 131
6.4.2 Source Area Treatment 134
6.5 System Design, Operation and Monitoring 136
6.5.1 Site Assessment Needs 136
6.5.2 Modeling 137
6.5.2.1 Modeling Overview 137
6.5.2.2 Example of Model Application: HFTWs 139
6.5.3 Electron Donor 141
6.5.3.1 Microcosm Testing 141
6.5.3.2 Example of a Microcosm Test 142
6.5.3.3 Basis for Electron Donor Selection 143
6.5.4 Performance Monitoring 144
6.5.5 Operational Issues 147
6.5.5.1 Undesirable Geochemical Impacts 147
6.5.5.2 Biofouling 147
6.6 Case Study: Aerojet Area 20 Groundwater Extraction - Reinjection System 149
6.6.1 Site Description 149
6.6.2 Site Geology and Hydrogeology 151
6.6.3 Pilot Test Design 153
6.6.4 PTA Installation, Instrumentation and Operation 154
6.6.5 Baseline Geochemical Characterization 155
6.6.6 Hydraulic Characterization (Tracer Testing) 157
6.6.7 System Operation 159
6.6.7.1 Electron Donor Addition 159
6.6.7.2 Biofouling Control 159
6.6.8 Demonstration Results 160
6.6.8.1 Oxidation-Reduction Potential (ORP) and Dissolved Oxygen (DO) 160
6.6.8.2 Perchlorate 160
6.6.8.3 VOCs 162
6.6.8.4 Nitrate 164
6.6.8.5 Sulfate and Sulfide 164
6.6.8.6 Ethanol and Degradation Intermediates 164
6.6.8.7 Methane 164
6.6.8.8 Dissolved Metals 165
6.6.9 Pilot Test Conclusions 166
6.7 Summary 167
References 167
Chapter 7 170
Semi-Passive In Situ Bioremediation 170
7.1 Background 170
7.1.1 What is a Semi-Passive Approach 170
7.1.2 When to Consider a Semi-Passive Approach 172
7.1.3 Advantages and Limitations Relative to Other Approaches 172
7.1.4 Technology Maturity 173
7.2 System Design, Operation, and Monitoring 174
7.2.1 Typical System Design 174
7.2.1.1 Recirculation Wells 174
7.2.1.2 Groundwater Recirculation System 174
7.2.1.3 Electron Donor Amendment System 175
7.2.1.4 Instrumentation and Controls 175
7.2.2 Site Assessment Needs 176
7.2.3 Groundwater Modeling 177
7.2.4 Tracer Testing 177
7.2.5 Operation and Maintenance 178
7.2.6 Monitoring 178
7.2.7 Health and Safety 179
7.3 Case Study: Semi-Passive Bioremediation of Perchlorate at The Longhorn Army Ammunitions Plant 179
7.3.1 Demonstration Test Procedures 179
7.3.2 Demonstration Test Results 182
7.3.3 Conclusions of Case Study 187
7.4 Summary 188
References 188
Chapter 8 190
Passive Bioremediation of Perchlorate Using Emulsified Edible Oils 190
8.1 Introduction 190
8.2 Design of Passive Bioremediation Systems 191
8.2.1 Treatment System Configurations 191
8.2.1.1 Source Area Treatment 191
8.2.1.2 Permeable Reactive Barriers 193
8.2.2 Planning and Design of Passive Bioremediation Systems 193
8.2.2.1 Amount of Substrate Required 193
Oil Consumption during Contaminant Biodegradation 194
Oil Retention by Aquifer Materials 194
8.2.2.2 Amount of Water Required 195
8.2.2.3 Injection Point Spacing 196
8.2.2.4 Additional Planning Considerations 197
Secondary Water Quality Issues 197
Soil Gas Generation 198
8.2.3 Site Characterization Requirements 198
8.2.3.1 Hydrogeology 199
8.2.3.2 Contaminant Distribution 199
8.2.3.3 Geochemistry 200
8.2.4 Monitoring 200
8.2.4.1 Contaminants and Biodegradation Products 200
8.2.4.2 Biogeochemistry 201
8.2.4.3 Indicators of Organic Carbon 201
8.3 Case Study 201
8.3.1 Demonstration Design 202
8.3.2 Monitoring 204
8.3.3 Results 204
8.4 Tools and Resources 206
8.5 Factors Controlling Cost and Performance 206
8.6 Summary 207
References 208
Chapter 9 211
Permeable Organic Biowalls for Remediation of Perchlorate In Groundwater 211
9.1 Introduction 211
9.1.1 Applications to Date 211
9.1.2 Technology Description 212
9.2 Site Suitability 213
9.2.1 Land Use and Infrastructure 213
9.2.2 Contaminant Concentration and Distribution 214
9.2.3 Hydrogeology 215
9.2.4 Geochemistry 215
9.2.5 Co-Contaminants 215
9.3 Design Of Permeable Biowalls 215
9.3.1 Site-Specific Hydrogeology and Contaminant Distribution 216
9.3.2 Dimensions, Configuration and Residence Time 216
9.3.3 Biowall Materials 217
9.3.4 Recharge Options and Alternative Configurations 217
9.3.5 Regulatory Compliance 218
9.4 Biowall Installation and Construction 219
9.4.1 Construction Methods 219
9.4.2 Quality Assurance/Quality Control 220
9.4.3 Waste Management Plan 220
9.5 Performance Monitoring 221
9.5.1 Biogeochemistry 221
9.5.2 Perchlorate Degradation 222
9.5.3 Sustaining the Reaction Zone 222
9.6 Biowall System Costs 223
9.6.1 Installation and Trenching Costs 223
9.6.2 Operations and Monitoring Costs 223
9.6.3 Summary of Life Cycle Costs 224
9.7 Case Study: Former Nwirp Mcgregor, Mcgregor, Texas 225
9.7.1 Fast Track Cleanup and Innovative Technology Implementation 225
9.7.2 Ex Situ Groundwater Treatment 226
9.7.3 In Situ Groundwater Treatment 226
9.7.4 Natural Attenuation in Groundwater 229
9.7.5 Ex Situ Soil Treatment 229
9 .7.6 Operations and Maintenance 230
9.8 Summary 231
References 231
Chapter 10 233
Cost Analysis of in Situ Perchlorate Bioremediation Technologies 233
10.1 Background 233
10.2 Costing Methodology 234
10.3 Template Site Characteristics and Variations Considered 236
10.4 Cost Estimates for Base Case Site Characteristics 240
10.5 Impacts of Changes in Site Characteristics on Costs 245
10.5.1 Case 2: Accelerated Clean Up 245
10.5.2 Cases 3 and 4: Reduced and Elevated Concentrations of Perchlorate 245
10.5.3 Cases 5 and 6: Lower and Higher Electron Acceptor Concentrations 247
10.5.4 Cases 7 and 8: Low and High Groundwater Seepage Velocities 248
10.5.5 Case 9: Deep Groundwater 248
10.5.6 Cases 10 and 11: Thin and Thick Saturated Vertical Intervals 249
10.5.7 Cases 12 and 13: Narrow and Wide Plumes 249
10.6 Summary 249
References 251
Chapter 11 253
Emerging Technologies for Perchlorate Bioremediation 253
11.1 Introduction 253
11.2 Monitored Natural Attenuation 253
11.2.1 Basis 253
11.2.1.1 Plume Stability 254
11.2.1.2 Geochemical Indicators 255
11.2.1.3 Biological Activity Indicators 255
11.2.1.4 Status 256
11.2.2 Advantages and Limitations 256
11.2.3 Case Studies 256
11.3 Phytoremediation 258
11.3.1 Basis 258
11.3.2 Status 261
11.3.3 Advantages and Limitations 262
11.3.4 Case Studies 262
11.3.4.1 Groundwater Remediation 262
11.3.4.2 Constructed Treatment Wetlands 263
11.4 Vadose Zone Bioremediation 263
11.4.1 Basis 265
11.4.1.1 Liquid Delivery 265
11.4.1.2 Gaseous Delivery 266
11.4.2 Status 267
11.4.3 Advantages and Limitations 268
11.4.4 Case Studies 268
References 272
Index 278

Erscheint lt. Verlag 2.12.2008
Reihe/Serie SERDP ESTCP Environmental Remediation Technology
SERDP ESTCP Environmental Remediation Technology
Zusatzinfo XLVI, 248 p.
Verlagsort New York
Sprache englisch
Themenwelt Sachbuch/Ratgeber Natur / Technik Natur / Ökologie
Naturwissenschaften Biologie Mikrobiologie / Immunologie
Naturwissenschaften Biologie Ökologie / Naturschutz
Naturwissenschaften Geowissenschaften Geologie
Naturwissenschaften Geowissenschaften Hydrologie / Ozeanografie
Technik Bauwesen
Technik Umwelttechnik / Biotechnologie
Schlagworte Contamination • currentlindy • Development • Engineering • Environment • hazardous waste • hydrogeology • Hydrology • Microbiology • Monitoring • pollution • propellant • remediation • remediation costs • serdp • Tore • Water • Water Quality and Water Pollution
ISBN-10 0-387-84921-1 / 0387849211
ISBN-13 978-0-387-84921-8 / 9780387849218
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 14,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Eine Reise durch die ausgestorbenen Ökosysteme der Erdgeschichte

von Thomas Halliday

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
CHF 16,60