Nicht aus der Schweiz? Besuchen Sie lehmanns.de

FX Barrier Options (eBook)

A Comprehensive Guide for Industry Quants
eBook Download: PDF
2016 | 1st ed. 2015
XXIX, 244 Seiten
Palgrave Macmillan UK (Verlag)
978-1-137-46275-6 (ISBN)

Lese- und Medienproben

FX Barrier Options - Zareer Dadachanji
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book is a quantitative quide to barrier options in FX environments.
Barrier options are a class of highly path-dependent exotic options which present particular challenges to practitioners in all areas of the financial industry. They are traded heavily as stand-alone contracts in the Foreign Exchange (FX) options market, their trading volume being second only to that of vanilla options. The FX options industry has correspondingly shown great innovation in this class of products and in the models that are used to value and risk-manage them. FX structured products commonly include barrier features, and in order to analyse the effects that these features have on the overall structured product, it is essential first to understand how individual barrier options work and behave. FX Barrier Options takes a quantitative approach to barrier options in FX environments. Its primary perspectives are those of quantitative analysts, both in the front office and in control functions. It presents and explains concepts in a highly intuitive manner throughout, to allow quantitatively minded traders, structurers, marketers, salespeople and software engineers to acquire a more rigorous analytical understanding of these products. The book derives, demonstrates and analyses a wide range of models, modelling techniques and numerical algorithms that can be used for constructing valuation models and risk-management methods. Discussions focus on the practical realities of the market and demonstrate the behaviour of models based on real and recent market data across a range of currency pairs. It furthermore offers a clear description of the history and evolution of the different types of barrier options, and elucidates a great deal of industry nomenclature and jargon.

Zareer Dadachanji is a quantitative analysis consultant with nearly two decades of corporate experience, mostly in financial quantitative modelling across a range of asset classes. He has spent 14 years working as a front-office quant at banks and hedge funds, including NatWest/RBS, Credit Suisse and latterly Standard Chartered Bank, where he held the position of Global Head of FX Quants. Zareer's specialist areas of expertise are the modelling of FX and equity derivatives. He combines these specialist areas with substantial knowledge of general quantitative modelling, gained through years of senior-level engagement in the activities of global cross-asset quant teams. Zareer is the founder and director of Model Quant Solutions, an independent consultancy providing bespoke quantitative analysis and training on a range of financial subjects. The consultancy serves a variety of clients and client types across the finance industry. Zareer holds a triple first in Natural Sciences and a PhD in Computational and Theoretical Physics, both from the University of Cambridge.

Cover 1
Half-Title 2
Tltle 4
Copyright 5
Dedication 6
Contents 8
List of Figures 13
List of Tables 20
Preface 21
Acknowledgements 25
Foreword 26
Glossary of Mathematical Notation 28
Contract Types 29
1 Meet the Products 31
1.1 Spot 31
1.1.1 Dollars per euro or euros per dollar? 33
1.1.2 Big figures and small figures 34
1.1.3 The value of Foreign 34
1.1.4 Converting between Domestic and Foreign 36
1.2 Forwards 36
1.2.1 The FX forward market 37
1.2.2 A formula for the forward rate 38
1.2.3 Payoff of a forward contract 40
1.2.4 Valuation of a forward contract 42
1.3 Vanilla options 42
1.3.1 Put–call parity 45
1.4 European digitals 46
1.5 Barrier-contingent vanilla options 46
1.6 Barrier-contingent payments 53
1.7 Rebates 55
1.8 Knock-in-knock-out (KIKO) options 55
1.9 Types of barriers 56
1.10 Structured products 57
1.11 Specifying the contract 58
1.12 Quantitative truisms 59
1.12.1 Foreign exchange symmetry and inversion 59
1.12.2 Knock-out plus knock-in equals no-barrier contract 59
1.12.3 Put–call parity 60
1.13 Jargon-buster 60
2 Living in a Black–Scholes World 63
2.1 The Black–Scholes model equation forspot price 63
2.2 The process for ln S 65
2.3 The Black–Scholes equation for option pricing 68
2.3.1 The lagless approach 68
2.3.2 Derivation of the Black–Scholes PDE 69
2.3.3 Black–Scholes model: hedging assumptions 72
2.3.4 Interpretation of the Black–Scholes PDE 73
2.4 Solving the Black–Scholes PDE 75
2.5 Payments 75
2.6 Forwards 77
2.7 Vanilla options 77
2.7.1 Transformation of the Black–Scholes PDE 78
2.7.2 Solution of the diffusion equation for vanilla options 82
2.7.3 The vanilla option pricing formulae 87
2.7.4 Price quotation styles 89
2.7.5 Valuation behaviour of vanilla options 90
2.8 Black–Scholes pricing of barrier-contingent vanilla options 94
2.8.1 Knock-outs 95
2.8.2 Knock-ins 99
2.8.3 Quotation methods 100
2.8.4 Valuation behaviour of barrier-contingent vanilla options 100
2.9 Black–Scholes pricing of barrier-contingent payments 103
2.9.1 Payment in Domestic 104
2.9.2 Payment in Foreign 106
2.9.3 Quotation methods 106
2.9.4 Valuation behaviour of barrier-contingent payments 107
2.10 Discrete barrier options 110
2.11 Window barrier options 110
2.12 Black–Scholes numerical valuation methods 111
3 Black–Scholes Risk Management 112
3.1 Spot risk 113
3.1.1 Local spot risk analysis 113
3.1.2 Delta 114
3.1.3 Gamma 115
3.1.4 Results for spot Greeks 116
3.1.5 Non-local spot risk analysis 127
3.2 Volatility risk 127
3.2.1 Local volatility risk analysis 128
3.2.2 Non-local volatility risk 142
3.3 Interest rate risk 143
3.4 Theta 145
3.5 Barrier over-hedging 147
3.6 Co-Greeks 150
4 Smile Pricing 151
4.1 The shortcomings of the Black–Scholes model 151
4.2 Black–Scholes with term structure (BSTS) 153
4.3 The implied volatility surface 155
4.4 The FX vanilla option market 156
4.4.1 At-the-money volatility 159
4.4.2 Risk reversal 161
4.4.3 Butterfly 162
4.4.4 The role of the Black–Scholes model in the FX vanilla options market 163
4.5 Theoretical Value (TV) 163
4.5.1 Conventions for extracting market data for TV calculations 164
4.5.2 Example broker quote request 165
4.6 Modelling market implied volatilities 166
4.7 The probability density function 167
4.8 Three things we want from a model 171
4.9 The local volatility (LV) model 171
4.9.1 It’s the smile dynamics, stupid 185
4.10 Five things we want from a model 186
4.11 Stochastic volatility (SV) models 187
4.11.1 SABR model 187
4.11.2 Heston model 188
4.12 Mixed local/stochastic volatility (LSV) models 192
4.12.1 Term structure of volatility of volatility 200
4.13 Other models and methods 201
4.13.1 Uncertain volatility (UV) models 201
4.13.2 Jump–diffusion models 202
4.13.3 Vanna–volga methods 203
5 Smile Risk Management 205
5.1 Black–Scholes with term structure 205
5.2 Local volatility model 209
5.3 Spot risk under smile models 210
5.4 Theta risk under smile models 212
5.5 Mixed local/stochastic volatility models 212
5.6 Static hedging 213
5.7 Managing risk across businesses 214
6 Numerical Methods 216
6.1 Finite-difference (FD) methods 216
6.1.1 Grid geometry 217
6.1.2 Finite-difference schemes 219
6.2 Monte Carlo (MC) methods 223
6.2.1 Monte Carlo schedules 224
6.2.2 Monte Carlo algorithms 225
6.2.3 Variance reduction 227
6.2.4 The Brownian Bridge 229
6.2.5 Early termination 230
6.3 Calculating Greeks 230
6.3.1 Bumped Greeks 230
6.3.2 Greeks from finite-difference calculations 232
6.3.3 Greeks from Monte Carlo 233
7 Further Topics 235
7.1 Managed currencies 235
7.2 Stochastic interest rates (SIR) 236
7.3 Real-world pricing 240
7.3.1 Bid–offer spreads 240
7.3.2 Rules-based pricing methods 242
7.4 Regulation and market abuse 243
A Derivation of the Black–Scholes Pricing Equations for Vanilla Options 245
B Normal and Lognormal Probability Distributions 250
B.1 Normal distribution 250
B.2 Lognormal distribution 250
C Derivation of the Local Volatility Function 251
C.1 Derivation in terms of call prices 251
C.2 Local volatility from implied volatility 255
C.3 Working in moneyness space 257
C.4 Working in log space 258
C.5 Specialization to BSTS 259
D Calibration of Mixed Local/Stochastic Volatility (LSV) Models 260
E Derivation of Fokker–Planck Equation for the Local Volatility Model 262
Bibliography 264
Index 267

Erscheint lt. Verlag 29.4.2016
Reihe/Serie Applied Quantitative Finance
Applied Quantitative Finance
Zusatzinfo XXIX, 244 p.
Verlagsort London
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik
Recht / Steuern Wirtschaftsrecht
Technik
Wirtschaft Betriebswirtschaft / Management Finanzierung
Betriebswirtschaft / Management Spezielle Betriebswirtschaftslehre Bankbetriebslehre
Wirtschaft Volkswirtschaftslehre Finanzwissenschaft
Wirtschaft Volkswirtschaftslehre Ökonometrie
Schlagworte Banking • Derivatives • Dynamics • Financial Engineering • Financial Mathematics • FX • Hedging • mathematical finance • Mathematics • Modeling • Probability • Quantitative Analysis • Quantitative Finance • risk analysis • Risk Management • Stochastic Interest Rates • Valuation • Volatility
ISBN-10 1-137-46275-2 / 1137462752
ISBN-13 978-1-137-46275-6 / 9781137462756
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ideen und Erfolgskonzepte für die Praxis

von Marcel Seidel; Svend Reuse

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
CHF 45,90
Keith Cheeseman Reveals the True Story of Britain's Biggest Ever …

von Keith Cheeseman; Clifford Thurlow

eBook Download (2024)
Icon Books Ltd (Verlag)
CHF 23,45