Revathi Subramanian is Senior Vice President, Data Science at CA Technologies, which helps Fortune 1000 companies manage and secure complex IT environments to support agile business services. She is the founding member of a team of high caliber data scientists that are uncovering business value and operational intelligence from the chaos of Big Data in areas like eCommerce, application performance management, infrastructure management, service virtualization, and project management. Before joining CA, Revathi was the co-founder of the SAS Advanced Analytic Solutions Division in 2002. She led the development of a new enterprise real-time fraud decisioning platform utilizing advanced analytics. Revathi has a Master's degree in Statistics from The Ohio State University and a Bachelor's degree in Mathematics from Ethiraj Collge, Chennai, India.
Preface xi
Acknowledgments xiii
About the Author xvii
Chapter 1 Bank Fraud: Then and Now 1
The Evolution of Fraud 2
The Evolution of Fraud Analysis 8
Summary 14
Chapter 2 Quantifying Fraud: Whose Loss Is It Anyway?
15
Fraud in the Credit Card Industry 22
The Advent of Behavioral Models 30
Fraud Management: An Evolving Challenge 31
Fraud Detection across Domains 33
Using Fraud Detection Effectively 35
Summary 37
Chapter 3 In God We Trust. The Rest Bring Data! 39
Data Analysis and Causal Relationships 40
Behavioral Modeling in Financial Institutions 42
Setting Up a Data Environment 47
Understanding Text Data 58
Summary 60
Chapter 4 Tackling Fraud: The Ten Commandments 63
1. Data: Garbage In; Garbage Out 67
2. No Documentation? No Change! 71
3. Key Employees Are Not a Substitute for Good Documentation
75
4. Rules: More Doesn't Mean Better 77
5. Score: Never Rest on Your Laurels 79
6. Score + Rules = Winning Strategy 83
7. Fraud: It Is Everyone's Problem 85
8. Continual Assessment Is the Key 86
9. Fraud Control Systems: If They Rest, They Rust 87
10. Continual Improvement: The Cycle Never Ends 88
Summary 88
Chapter 5 It Is Not Real Progress Until It Is Operational
89
The Importance of Presenting a Solid Picture 90
Building an Effective Model 92
Summary 105
Chapter 6 The Chain Is Only as Strong as Its Weakest Link
109
Distinct Stages of a Data-Driven Fraud Management System 110
The Essentials of Building a Good Fraud Model 112
A Good Fraud Management System Begins with the Right Attitude
117
Summary 119
Chapter 7 Fraud Analytics: We Are Just Scratching the Surface
121
A Note about the Data 125
Data 126
Regression 1 128
Logistic Regression 1 132
"Models Should Be as Simple as Possible, But Not
Simpler" 149
Summary 151
Chapter 8 The Proof of the Pudding May Not Be in the Eating
153
Understanding Production Fraud Model Performance 154
The Science of Quality Control 155
False Positive Ratios 156
Measurement of Fraud Detection against Account False Positive
Ratio 156
Unsupervised and Semisupervised Modeling Methodologies 158
Summary 159
Chapter 9 The End: It Is Really the Beginning! 161
Notes 165
Index 167
Erscheint lt. Verlag | 11.3.2014 |
---|---|
Reihe/Serie | SAS Institute Inc |
SAS Institute Inc | Wiley and SAS Business Series |
Sprache | englisch |
Themenwelt | Recht / Steuern ► Strafrecht ► Kriminologie |
Recht / Steuern ► Wirtschaftsrecht | |
Sozialwissenschaften | |
Wirtschaft ► Betriebswirtschaft / Management ► Finanzierung | |
Betriebswirtschaft / Management ► Spezielle Betriebswirtschaftslehre ► Bankbetriebslehre | |
Wirtschaft ► Betriebswirtschaft / Management ► Unternehmensführung / Management | |
Schlagworte | Bank Fraud • Business & Management • corporate security managers • data intelligence in financial services industry • data science and fraud detection • Financial institutions • Fraud Management • Fraud Prevention • fraud prevention professionals • key terms in fraud prevention • loss avoidance • loss prevention managers • Revathi Subramanian • Statistics • Strategic Management • strategies for combatting fraud • Strategisches Management • tackling fraud • technology for data intelligence • technology for fraud prevention • value of technology • Wirtschaft u. Management |
ISBN-10 | 1-118-23397-2 / 1118233972 |
ISBN-13 | 978-1-118-23397-9 / 9781118233979 |
Haben Sie eine Frage zum Produkt? |
Größe: 4,9 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich