Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Lineare Algebra

und ihre Anwendungen
Buch | Softcover
XI, 431 Seiten
2006 | 1., 2006
Spektrum Akademischer Verlag
978-3-8274-1632-2 (ISBN)

Lese- und Medienproben

Lineare Algebra - Herbert J. Muthsam
CHF 46,15 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
Das Lehrbuch führt in die Lineare Algebra ein. Um den Einstieg in die mathematische Denkweise zu erleichtern, vermittelt der Autor zunächst anschauliche geometrische Prinzipien, um danach den Abstraktionsgrad schrittweise zu steigern. Mit Übungsaufgaben.
(Autor) Herbert Muthsam (Titel) Lineare Algebra und Ihre Anwendungen (usp) mit vielen Übungsaufgaben (copy) Bei diesem Lehrbuch wird von Anfang an ein starkes Gewicht auf die Wechselbeziehungen zwischen guter Theorie und Anwendungen gelegt. Ein einfacher, anschauungsbasierter Zugang in den ersten Kapiteln ermöglicht einen sanften Einstieg in die mathematische Denkweise. Anwendungen, die sich auf dieser Basis ganz natürlich ergeben, umfassen Fouriertransformationen, gewöhnliche Differentialgleichungen, llineare Optimierung sowie Methoden der Modellierung und numerische Verfahren mit Blick auf Fragen aus Naturwissenschaften, Technik und Wirtschaftswissenchaften. (Biblio)

Herbert J. Muthsam ist Professor an der Fakultät für Mathematik der Universität Wien. Er hält mathematische und anwendungsorientierte Vorlesungen für Studierende der Mathematik und der physikalischen Wissenschaften. Er forscht über numerische Modellierung vorwiegend für astrophysikalische Fragestellungen.

Vorwort 1 Einführung 1.1 Aus der Mengenlehre 1.2 Der n-dimensionale Raum 1.3 Vektoraddition; skalares Vielfaches eines Vektors 1.4 Geraden 1.5 Die Geradengleichung in der Ebene 1.6 Das innere Produkt in der Ebene 1.7 Abstand Punkt - Gerade 1.8 Das innere Produkt im Raume 1.9 Lineare Abhängigkeit und Unabhängigkeit von Vektoren im Rn . 1.10 Das äußere Produkt im Raume 1.11 Ebenen im Raume; Abstand Punkt - Ebene 1.12 Abbildungen 2 Gruppen, Körper, lineare Räume 2.1 Gruppen 2.2 Körper 2.3 Lineare oder Vektorräume 2.4 Das Erzeugnis 2.5 Lineare Abhängigkeit und Unabhängigkeit 2.6 Basen in endlichdimensionalen Räumen 3 Lineare Abbildungen 3.1 Definition und Beispiele 3.2 Lineare Abbildungen und Matrizen 3.3 Zusammensetzung linearer Abbildungen 3.4 Das Gauß'sche Eliminationsverfahren 3.5 Invertierung linearer Abbildungen 3.6 Weiteres zum Eliminationsverfahren 3.7 Anwendung: Zur Wärmeleitungsgleichung 4 Geometrie linearer Abbildungen 4.1 Der Nullraum oder Kern 4.2 Das Bild 4.3 Basiswechsel 4.4 Der Rang einer linearen Abbildung 4.5 Direkte Summen; Quotientenräume 5 Lineare Abbildungen - Determinanten 5.1 Determinanten kleiner Matrizen 5.2 Permutationen 5.3 Determinanten - Vorbereitung 5.4 Grundeigenschaften von Determinanten 5.5 Algorithmisches 6 Eigenwerte und Eigenvektoren 6.1 Von den Polynomen 6.2 Eigenwerte und Eigenvektoren: Grundeigenschaften 6.3 Das charakteristische Polynom 6.4 Eigenräume 7 Innere Produkte und Normen 7.1 Inneres Produkt - reeller Fall 7.2 Inneres Produkt - komplexer Fall 7.3 Normierte Räume 7.4 Orthogonalisierung von Vektoren 7.5 Orthogonale Basen und andere 7.6 Adjunktion, Transposition und Hermite'sche Konjugation 7.7 Beste Approximation durch Teilräume 7.8 Ausgleichsprobleme 8 Adjungierte Transformation und selbstadjungierte Abbildungen 8.1 Die adjungierte Transformation 8.2 Normale Abbildungen 8.3 Selbstadjungierte Abbildungen 8.4 Orthogonale und unitäre Abbildungen 8.5 Bilinearformen und Sesquilinearformen 8.6 Synopsis: Gruppen linearer Abbildungen 8.7 Klassifikation der Kurven und Flächen zweiter Ordnung 8.8 Komplexe Exponentialfunktion und Fourierreihen 8.9 Die diskrete Fouriertransformation 8.10 Anwendungen der Fouriertransformation 9 Normalformen von Matrizen 9.1 Die Jordan'sche Normalform 9.2 Anwendung: Gewöhnliche Differentialgleichungen 9.3 Die Singulärwertzerlegung 10 Lineare Algebra und partielle Differentialgleichungen 10.1 Methode der Finiten Elemente 10.2 Die Wärmeleitungsgleichung: Symmetrie und Variationsprinzip 10.3 Die Ritz-Galernkin'sche Methode 10.4 Implementierung des Ritz-Galernkin'schen Verfahrens 10.5 Die von Neumann'sche Stabilitätsanalyse 11 Numerische Lineare Algebra 11.1 Householder-Matrizen und die QR-Zerlegung 11.2 Normen: Querverbindungen zur Analysis 11.3 Matrixnormen 11.4 Kondition von Gleichungssystemen 11.5 Iterative Lösung von Gleichungen: Das Prinzip 11.6 Die Verfahren von Jacobi und Gauß-Seidel 11.7 Das Mehrgitterverfahren 11.8 Das Verfahren der konjugierten Gradienten 11.9 Eigenwerte: Die Potenzmethode 11.10 Hessenbergmatrizen 11.11 Eigenwerte reeller symmetrischer Matrizen 12 Lineare Optimierung 12.1 Die Problemstellung 12.2 Konvexe Polyeder 12.3 Die Simplexmethode Index

Sprache deutsch
Maße 170 x 240 mm
Gewicht 830 g
Einbandart Paperback
Schlagworte Hardcover, Softcover / Mathematik/Arithmetik, Algebra • HC/Mathematik/Arithmetik, Algebra • Lineare Algebra; Handbuch/Lehrbuch • Lineare Algebra; Hand-/Lehrbücher
ISBN-10 3-8274-1632-9 / 3827416329
ISBN-13 978-3-8274-1632-2 / 9783827416322
Zustand Neuware
Haben Sie eine Frage zum Produkt?