Physics and Chemistry of Interfaces (eBook)

475 Seiten
Wiley-VCH (Verlag)
978-3-527-83617-8 (ISBN)
Comprehensive textbook on the interdisciplinary field of interface science, fully updated with new content on spectroscopy, nonlinear effects, and coatings
Physics and Chemistry of Interfaces provides a comprehensive introduction to the field of surface and interface science, focusing on essential concepts rather than specific details, and on intuitive understanding rather than convoluted math. Numerous high-end applications from surface technology, biotechnology, and microelectronics are included to illustrate and help readers easily comprehend basic concepts.
The new edition contains an increased number of problems with detailed, worked solutions, making it ideal as a self-study resource. In topic coverage, the highly qualified authors take a balanced approach, discussing advanced interface phenomena in detail while remaining comprehensible. Chapter summaries with the most important equations, facts, and phenomena are included to aid the reader in information retention.
A few of the sample topics included in Physics and Chemistry of Interfaces are as follows:
- Liquid surfaces, covering microscopic picture of a liquid surface, surface tension, the equation of Young and Laplace, and curved liquid surfaces
- Thermodynamics of interfaces, covering surface excess, internal energy and Helmholtz energy, equilibrium conditions, and interfacial excess energies
- Charged interfaces and the electric double layer, covering planar surfaces, the Grahame equation, and limitations of the Poisson-Boltzmann theory
- Surface forces, covering Van der Waals forces between molecules, macroscopic calculations, the Derjaguin approximation, and disjoining pressure
Physics and Chemistry of Interfaces is a complete reference on the subject, aimed at advanced students (and their instructors) in physics, material science, chemistry, and engineering. Researchers requiring background knowledge on surface and interface science will also benefit from the accessible yet in-depth coverage of the text.
Hans-Jürgen Butt is Director at the Max Planck Institute of Polymer Research in Mainz, Germany. His research topics include surface forces and wetting. Karlheinz Graf is Professor for Physical Chemistry at the University of Applied Sciences (Hochschule Niederrhein) in Krefeld. Michael Kappl is group leader at the Max Planck Institute for Polymer Research. He investigates the adhesion and friction of micro- and nanocontacts and capillary forces.
Hans-Jürgen Butt is Director at the Max Planck Institute of Polymer Research in Mainz, Germany. He studied physics in Hamburg and Göttingen, Germany. Then he went to the Max-Planck-Institute of Biophysics in Frankfurt to work in Ernst Bamberg's group. After receiving his Ph.D. in 1989 he went as a post-doc to Santa Barbara, California. From 1990-95 he spent as a researcher back in Germany at the Max-Planck-Institute for Biophysics. In 1996 he became associate professor for physical chemistry at the University Mainz, three years later full professor at the University of Siegen. Only two years later he joined the Max Planck Institute of Polymer Research in Mainz and became director for Experimental Physics. His research topics include Surface forces and wetting. Karlheinz Graf graduated at the Institute for Physical Chemistry in Mainz, and spent a postdoc at the University of California, Santa Barbara (UCSB). He has served as Project leader at the Max-Planck-Institute for Polymer Research, where his research concentrated on droplet evaporation, the structuring of polymer surfaces, and on constructing a special device for measuring forces between a solid surface and an adaptive lipid monolayer in a Langmuir trough. Afterwards he was acting Professor in Physical and Analytical Chemistry at the University of Siegen. After a short period at the University of Duisburg-Essen he became Professor for Physical Chemistry at the University of Applied Sciences (Hochschule Niederrhein) in Krefeld. Michael Kappl studied physics at the University of Regensburg and the Technical University of Munich, and did his PhD thesis work in Ernst Bamberg's group at the Max Planck Institute of Biophysics in Frankfurt. After a year of postdoctoral research at the University of Mainz in the group of Prof. Butt, he worked as a consultant for Windows NT network solutions at the Pallas Soft AG, Regensburg. In 2000, he rejoined the group of Hans-Jürgen Butt. Since 2002 he is group leader at the Max Planck Institute for Polymer Research. By using focused ion beam methods, his investigates the adhesion and friction of micro- and nanocontacts, and capillary forces
Cover 1
Title Page 5
Copyright 6
Contents 7
Preface 15
Chapter 1 Introduction 17
Chapter 2 Liquid Surfaces 21
2.1 Microscopic Picture of a Liquid Surface 21
2.2 Surface Tension 22
2.3 Equation of Young and Laplace 26
2.3.1 Curved Liquid Surfaces 26
2.3.2 Derivation of Young–Laplace Equation 29
2.3.3 Applying the Young–Laplace Equation 30
2.4 Techniques to Measure Surface Tension 31
2.5 Kelvin Equation 36
2.6 Capillary Condensation 39
2.7 Nucleation Theory 42
2.8 Summary 47
2.9 Exercises 47
Chapter 3 Thermodynamics of Interfaces 49
3.1 Thermodynamic Functions for Bulk Systems 49
3.2 Surface Excess 50
3.3 Thermodynamic Relations for Systems with an Interface 54
3.3.1 Internal Energy and Helmholtz Energy 54
3.3.2 Equilibrium Conditions 55
3.3.3 Location of Interface 56
3.3.4 Gibbs Energy and Enthalpy 57
3.3.5 Interfacial Excess Energies 57
3.4 Pure Liquids 59
3.5 Gibbs Adsorption Isotherm 61
3.5.1 Derivation 61
3.5.2 System of Two Components 62
3.5.3 Experimental Aspects 64
3.5.4 Marangoni Effect 65
3.6 Summary 67
3.7 Exercises 67
Chapter 4 Charged Interfaces and the Electric Double Layer 69
4.1 Introduction 69
4.2 Mathematical Description of the Electric Double Layer 71
4.2.1 The Poisson–Boltzmann Equation 72
4.2.2 Gouy–Chapman Model for Planar Surfaces 73
4.2.3 The Full One?Dimensional Case 75
4.2.4 The Electric Double Layer around a Sphere 77
4.2.5 The Grahame Equation 78
4.2.6 Gibbs Energy of the Electric Double Layer 80
4.2.7 Limitations of the Poisson–Boltzmann Theory 81
4.2.8 Stern Model 83
4.3 Experimental Characterization of Charged Interfaces 84
4.3.1 Types of Potentials 84
4.3.2 Electrocapillarity 86
4.3.3 Examples of Charged Surfaces 89
4.3.4 Potentiometric Colloid Titration 96
4.3.5 Capacitances 98
4.4 Electrokinetic Phenomena: The Zeta Potential 99
4.4.1 The Navier–Stokes Equation 100
4.4.2 Electro?osmosis and Streaming Potential 102
4.4.3 Electrophoresis and Sedimentation Potential 104
4.5 Summary 107
4.6 Exercises 107
Chapter 5 Surface Forces 109
5.1 Van der Waals Forces Between Molecules 109
5.2 Van der Waals Force Between Macroscopic Solids 113
5.2.1 Microscopic Approach 113
5.2.2 Macroscopic Calculation?–?Lifshitz Theory 116
5.2.3 Retarded Van der Waals Forces 121
5.2.4 Surface Energy and the Hamaker Constant 122
5.3 Concepts for the Description of Surface Forces 123
5.3.1 The Derjaguin Approximation 123
5.3.2 Disjoining Pressure 125
5.4 Measurement of Surface Forces 126
5.5 Electrostatic Double?Layer Force 128
5.5.1 Electrostatic Interaction Between Two Identical Surfaces 128
5.5.2 DLVO Theory 132
5.6 Beyond DLVO Theory 135
5.6.1 Solvation Force and Confined Liquids 135
5.6.2 Non?DLVO Forces in Aqueous Medium 137
5.7 Steric and Depletion Interaction 138
5.7.1 Properties of Polymers 138
5.7.2 Force Between Polymer?coated Surfaces 139
5.7.3 Depletion Forces 142
5.8 Spherical Particles in Contact 143
5.9 Summary 147
5.10 Exercises 148
Chapter 6 Contact Angle Phenomena and Wetting 151
6.1 Young's Equation 151
6.1.1 Equilibrium Contact Angle 151
6.1.2 Derivation 152
6.1.3 Complete Wetting, Surface Forces, and the Core Region 156
6.1.4 Line Tension, Wetting Transitions, Estimation of Interfacial Energies 158
6.2 Wetting of Real Surfaces 161
6.2.1 Advancing and Receding Contact Angles 161
6.2.2 Measurement of Contact Angles 162
6.2.3 Causes of Contact Angle Hysteresis 163
6.2.4 Surface Roughness and Heterogeneity 165
6.2.5 Superhydrophobic Surfaces 166
6.2.6 Surfaces with Low Sliding Angle 168
6.3 Important Wetting Geometries 169
6.3.1 Capillary Rise 169
6.3.2 Particles at Interfaces 171
6.3.3 Network of Fibers 173
6.4 Dynamics of Wetting and Dewetting 174
6.4.1 Spontaneous Spreading 174
6.4.2 Dynamic Contact Angles 176
6.4.3 Coating and Dewetting 179
6.5 Applications 180
6.5.1 Flotation 180
6.5.2 Detergency 182
6.5.3 Microfluidics 183
6.5.4 Electrowetting 184
6.6 Thick Films: Spreading of One Liquid on Another 185
6.7 Summary 188
6.8 Exercises 189
Chapter 7 Solid Surfaces 191
7.1 Introduction 191
7.2 Description of Crystalline Surfaces 192
7.2.1 Substrate Structure 192
7.2.2 Surface Relaxation and Reconstruction 193
7.2.3 Description of Adsorbate Structures 195
7.3 Preparation of Clean Surfaces 196
7.3.1 Thermal Treatment 197
7.3.2 Plasma or Sputter Cleaning 197
7.3.3 Cleavage 198
7.3.4 Deposition of Thin Films 199
7.4 Thermodynamics of Solid Surfaces 199
7.4.1 Surface Energy, Surface Tension, and Surface Stress 199
7.4.2 Determining Surface Energy 202
7.4.3 Surface Steps and Defects 205
7.5 Surface Diffusion 207
7.5.1 Theoretical Description of Surface Diffusion 208
7.5.2 Measurement of Surface Diffusion 211
7.6 Solid–Solid Interfaces 214
7.7 Microscopy 216
7.7.1 Optical Microscopy 216
7.7.2 Electron Microscopy 217
7.7.3 Scanning Probe Microscopy 219
7.8 Diffraction Methods 222
7.8.1 Diffraction Patterns of Two?Dimensional Periodic Structures 222
7.8.2 Diffraction with Electrons, X?Rays, and Atoms 223
7.9 Spectroscopy 225
7.9.1 Optical Spectroscopy of Surfaces 225
7.9.2 Spectroscopy Using Inner Electrons 229
7.9.3 Spectroscopy with Outer Electrons 230
7.9.4 Secondary Ion Mass Spectrometry 231
7.10 Summary 233
7.11 Exercises 234
Chapter 8 Adsorption 235
8.1 Introduction 235
8.1.1 Definitions 235
8.1.2 The Adsorption Time 237
8.1.3 Classification of Adsorption Isotherms 238
8.1.4 Presentation of Adsorption Isotherms 240
8.2 Thermodynamics of Adsorption 240
8.2.1 Heats of Adsorption 240
8.2.2 Differential Quantities of Adsorption 242
8.3 Adsorption Models 244
8.3.1 The Langmuir Adsorption Isotherm 244
8.3.2 The Langmuir Constant and Gibbs Energy of Adsorption 246
8.3.3 Langmuir Adsorption with Lateral Interactions 247
8.3.4 The BET Adsorption Isotherm 248
8.3.5 Adsorption on Heterogeneous Surfaces 251
8.4 Experimental Aspects of Adsorption from the Gas Phase 252
8.4.1 Measuring Adsorption to Planar Surfaces 252
8.4.2 Measuring Adsorption to Powders and Textured Materials 254
8.4.3 Adsorption to Porous Materials 255
8.4.4 Chemisorption and Temperature?programmed Desorption 264
8.5 Adsorption from Solution 265
8.6 Summary 267
8.7 Exercises 268
Chapter 9 Surface Modification 271
9.1 Introduction 271
9.2 Physical and Chemical Vapor Deposition 272
9.2.1 Physical Vapor Deposition 272
9.2.2 Chemical Vapor Deposition 275
9.3 Soft Matter Deposition 278
9.3.1 Self?assembled Monolayers 278
9.3.2 Physisorption of Polymers 282
9.3.3 Polymerization on Surfaces 284
9.3.4 Plasma Polymerization 288
9.4 Etching Techniques 290
9.5 Lithography 294
9.6 Summary 296
9.7 Exercises 297
Chapter 10 Friction, Lubrication, and Wear 299
10.1 Friction 299
10.1.1 Introduction 299
10.1.2 Amontons' and Coulomb's Law 300
10.1.3 Static, Kinetic, and Stick?Slip Friction 302
10.1.4 Rolling Friction 304
10.1.5 Friction and Adhesion 305
10.1.6 Techniques to Measure Friction 306
10.1.7 Macroscopic Friction 308
10.1.8 Microscopic Friction 309
10.2 Lubrication 312
10.2.1 Hydrodynamic Lubrication 312
10.2.2 Boundary Lubrication 315
10.2.3 Thin?film Lubrication 316
10.2.4 Superlubricity 317
10.2.5 Lubricants 319
10.3 Wear 321
10.4 Summary 322
10.5 Exercises 323
Chapter 11 Surfactants, Micelles, Emulsions, and Foams 325
11.1 Surfactants 325
11.2 Spherical Micelles, Cylinders, and Bilayers 330
11.2.1 Critical Micelle Concentration 330
11.2.2 Influence of Temperature 332
11.2.3 Thermodynamics of Micellization 333
11.2.4 Structure of Surfactant Aggregates 335
11.2.5 Biological Membranes 338
11.3 Macroemulsions 339
11.3.1 General Properties 339
11.3.2 Formation 342
11.3.3 Stabilization 344
11.3.4 Evolution and Aging 346
11.3.5 Coalescence and Demulsification 348
11.4 Microemulsions 349
11.4.1 Size of Droplets 350
11.4.2 Elastic Properties of Surfactant Films 351
11.4.3 Factors Influencing the Structure of Microemulsions 352
11.5 Foams 354
11.5.1 Classification, Application, and Formation 354
11.5.2 Structure of Foams 355
11.5.3 Soap Films 357
11.5.4 Evolution of Foams 359
11.6 Summary 360
11.7 Exercises 361
Chapter 12 Thin Films on Surfaces of Liquids 363
12.1 Introduction 363
12.2 Phases of Monomolecular Films 366
12.3 Experimental Techniques to Study Monolayers 369
12.3.1 Optical Microscopy 369
12.3.2 Infrared and Sum Frequency Generation Spectroscopy 371
12.3.3 X?Ray Reflection and Diffraction 372
12.3.4 Surface Potential 375
12.3.5 Rheologic Properties of Liquid Surfaces 377
12.4 Langmuir–Blodgett Transfer 382
12.5 Summary 384
12.6 Exercises 385
Chapter 13 Solutions to Exercises 387
Chapter 2: Liquid Surfaces 387
Chapter 3: Thermodynamics of Surfaces 389
Chapter 4: Charged Interfaces and the Electric Double Layer 391
Chapter 5: Surface Forces 393
Chapter 6: Contact Angle Phenomena and Wetting 396
Chapter 7: Solid Surfaces 398
Chapter 8: Adsorption 400
Chapter 9: Surface Modification 404
Chapter 10: Friction, Lubrication, and Wear 405
Chapter 11: Surfactants, Micelles, Emulsions, and Foams 406
Chapter 12: Thin Films on Surfaces of Liquids 407
Chapter 14 Analysis of Diffraction Patterns 411
14.1 Diffraction at Three?Dimensional Crystals 411
14.1.1 Bragg Condition 411
14.1.2 Laue Condition 411
14.1.3 Reciprocal Lattice 413
14.1.4 Ewald Construction 414
14.2 Diffraction at Surfaces 415
14.3 Intensity of Diffraction Peaks 416
Appendix A Symbols and Abbreviations 421
Bibliography 427
Index 457
EULA 475
Erscheint lt. Verlag | 26.1.2023 |
---|---|
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Atom- / Kern- / Molekularphysik |
Schlagworte | capillary forces • charged interfaces • Chemie • Chemistry • Coatings • Condensed Matter • Dünne Schichten, Oberflächen u. Grenzflächen • Electric double layer • Engineering • Grenzfläche • Helmholtz energy • interface science • Kondensierte Materie • Liquid surfaces • Material Science • Materials Science • Materialwissenschaften • nonlinear effects • Oberflächenphysik • Physical Chemistry • Physics • Physik • Physikalische Chemie • spectroscopy • Surface Forces • Surface Science • Thin Films, Surfaces & Interfaces |
ISBN-10 | 3-527-83617-9 / 3527836179 |
ISBN-13 | 978-3-527-83617-8 / 9783527836178 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |

Größe: 14,7 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich