Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Numerical Calculations in Clifford Algebra - Andrew Seagar

Numerical Calculations in Clifford Algebra

A Practical Guide for Engineers and Scientists

(Autor)

Buch | Hardcover
528 Seiten
2023
John Wiley & Sons Inc (Verlag)
978-1-394-17324-2 (ISBN)
CHF 165,85 inkl. MwSt
NUMERICAL CALCULATIONS IN CLIFFORD ALGEBRA An intuitive combination of the theory of Clifford algebra with numerous worked and computed examples and calculations

Numerical Calculations in Clifford Algebra: A Practical Guide for Engineers and Scientists is an accessible and practical introduction to Clifford algebra, with comprehensive coverage of the theory and calculations. The book offers many worked and computed examples at a variety of levels of complexity and over a range of different applications making extensive use of diagrams to maintain clarity. The author introduces and documents the Clifford Numerical Suite, developed to overcome the limitations of existing computational packages and to enable the rapid creation and deployment of sophisticated and efficient code.

Applications of the suite include Fourier transforms for arrays of any types of Clifford numbers and the solution of linear systems in which the coefficients are Clifford numbers of particular types, including scalars, bicomplex numbers, quaternions, Pauli matrices, and extended electromagnetic fields. Readers will find:



A thorough introduction to Clifford algebra, with a combination of theory and practical implementation in a range of engineering problems
Comprehensive explorations of a variety of worked and computed examples at various levels of complexity
Practical discussions of the conceptual and computational tools for solving common engineering problems
Detailed documentation on the deployment and application of the Clifford Numerical Suite

Perfect for engineers, researchers, and academics with an interest in Clifford algebra, Numerical Calculations in Clifford Algebra: A Practical Guide for Engineers and Scientists will particularly benefit professionals in the areas of antenna design, digital image processing, theoretical physics, and geometry.

Andrew Seagar, PhD, is Director for the Bachelor of Engineering Programs at the Gold Coast Campus of the School of Engineering at Griffith University in Australia. He has experience in a variety of research, commercial development, and academic positions around the world, primarily in the areas of electrical or biomedical engineering.

List of Figures xv

List of Tables xix

Preface xxi

Part I Entities and Operations 1

1 Introduction 3

1.1 Operations 3

1.2 History 4

1.3 Alternative Forms 5

1.4 Naming 6

1.5 Structure 7

1.5.1 Algebraic 7

1.5.2 Numeric 8

1.6 Entities 11

References 12

2 Input 13

2.1 Syntax 13

2.2 Constants 14

2.2.1 Specific Types 14

2.2.2 General 16

2.3 Variables 19

2.3.1 Checking and Converting 19

Reference 23

3 Output 25

3.1 Tree Format 26

3.2 Numeric Formats 29

3.2.1 Default Format 29

3.2.2 Defined Format 31

3.3 Extended Formats 32

3.3.1 Rounding 32

3.3.2 Parts of Coefficients 33

3.4 Selected Components 35

3.5 Primitive Formats 36

3.6 Recovered Values 38

4 Unary Operations 41

4.1 Theory 41

4.1.1 Negation 41

4.1.2 Involution 41

4.1.3 Pair Exchange 42

4.1.4 Reversion 43

4.1.5 Clifford Conjugation 44

4.1.6 Supplementation and Pseudo-scalar 44

4.2 Practice 45

4.2.1 Example Code 45

4.2.2 Example Output 47

5 Binary Operations 49

5.1 Geometric Origins 49

5.1.1 Outer Multiplication 49

5.1.2 Orthogonal Components 52

5.1.3 Inner Multiplication 53

5.1.4 Names 54

5.2 Multiplication of Units 55

5.2.1 Progressive and Regressive Multiplication 55

5.2.2 Outer, Inner, and Central Multiplication 57

5.2.3 Multiplication By Scalars 58

5.3 Central Multiplication 59

5.3.1 Primal Units 60

5.3.2 Evolved and Other Units 61

5.3.3 Numbers 62

5.4 Practice 63

5.4.1 Example Code 63

5.4.2 Example Output 65

5.4.3 Multiplication Tables 65

References 70

6 Vectors and Geometry 71

6.1 Theory 71

6.1.1 Magnitude 71

6.1.2 Inverse 72

6.1.3 Reflection 72

6.1.4 Projection 73

6.1.5 Rotation 73

6.2 Practice 74

6.2.1 Example Code 74

6.2.2 Example Output 76

7 Quaternions 79

7.1 Theory 79

7.1.1 Magnitude 80

7.1.2 Inverse 80

7.1.3 Reflection and Projection 80

7.1.4 Rotation 81

7.1.5 Intersection 82

7.1.6 Factorisation 82

7.2 Practice 83

7.2.1 Example Code 83

7.2.2 Example Output 86

References 87

8 Pauli Matrices 89

8.1 Theory 89

8.1.1 Recovery of Components 90

8.1.2 Magnitude 90

8.1.3 Inverse 91

8.1.4 Reflection, Projection, and Rotation 91

8.2 Practice 91

8.2.1 Example Code 91

8.2.2 Example Output 94

Reference 95

9 Bicomplex Numbers 97

9.1 Theory 97

9.1.1 Conjugate 98

9.1.2 Magnitude 98

9.1.3 Inverse 98

9.1.4 Reflection, Projection, and Rotation 99

9.2 Practice 99

9.2.1 Example Code 99

9.2.2 Example Output 101

Reference 102

10 Electromagnetic Fields 103

10.1 Theory 103

10.1.1 Time and Frequency 103

10.1.2 Electromagnetic Entities 104

10.1.3 Dirac Operators 105

10.1.4 Maxwell’s Equations 105

10.1.5 Simplified Notation 105

10.1.6 Magnitude 106

10.1.7 Inverse 106

10.1.8 Reflection 107

10.1.9 Projection 107

10.1.10 Rotation 107

10.2 Practice 107

10.2.1 Example Code 107

10.2.2 Example Output 110

10.3 Field Arithmetic 112

10.3.1 Extensions Based on Quaternions 112

10.3.2 Inverses 113

10.3.3 Example Code 115

10.3.4 Example Output 117

References 118

11 Arrays of Clifford Numbers 119

11.1 Theory 119

11.2 Practice 120

11.2.1 Example Code 120

11.2.2 Example Output 123

Reference 125

12 Power Series 127

12.1 Theory 127

12.1.1 User Defined 127

12.1.2 Predefined 128

12.1.3 Convergence 129

12.1.4 Factorisation 130

12.1.5 Squaring 131

12.2 Practice 131

12.2.1 User Defined 131

12.2.2 Predefined 133

12.2.2.1 Standard Convergence 136

12.2.2.2 Extended Convergence 141

12.2.2.3 Doubly Extended Convergence 146

References 148

13 Matrices of Clifford Numbers 149

13.1 Background 149

13.2 Inversion 150

13.3 Practice 152

13.3.1 Example Code 152

13.3.2 Example Output 155

Reference 159

Part II Customisation 161

14 Memory 163

14.1 Memory Usage 163

14.2 Examples 165

14.2.1 Memory Tree Sparsity 165

14.2.2 Memory Expansion 170

14.2.3 Memory Recycling 171

14.2.3.1 Explicit and Implicit 171

14.2.3.2 Implicit and Nested 173

Reference 175

15 Errors 177

15.1 User Errors 177

15.1.1 Syntax Errors and Messages 180

15.2 System Errors 181

15.3 Recovery 182

15.4 Beneficial Usage 185

Reference 191

16 Extension 193

16.1 Accumulation 193

16.2 Multiplication 195

16.3 Transformation 197

16.4 Filtration 198

Part III Application 203

17 Verification 205

17.1 Identities 205

17.2 Tests 205

17.2.1 Example Code 205

17.2.2 Example Output 208

Reference 214

18 Lines Not Parallel 215

18.1 Theory 215

18.1.1 Common Plane 215

18.1.1.1 Inner Product 216

18.1.1.2 Outer Product 217

18.1.1.3 Geometrical Interpretation 217

18.1.2 No Plane in Common 218

18.1.2.1 Inner Product 219

18.1.2.2 Solution 219

18.2 Practice 220

18.2.1 Example Code 220

18.2.2 Example Output 223

Reference 224

19 Perspective Projection 225

19.1 Theory 225

19.2 Practice 225

19.2.1 Example Code 225

19.2.2 Example Output 229

Reference 230

20 Linear Systems 231

20.1 Theory 231

20.2 Practice 233

20.2.1 Example Code 233

20.2.2 Example Output 235

References 235

21 Fast Fourier Transform 237

21.1 Theory 237

21.2 Practice 238

21.2.1 Example Code 238

21.2.2 Example Output 243

References 244

22 Hertzian Dipole 245

22.1 Theory 245

22.2 Practice 246

22.2.1 Example Code 246

22.2.2 Example Output 251

Reference 253

23 Finite Difference Time Domain 255

23.1 Theory 255

23.1.1 Analytical Solution 255

23.1.2 Series Solution 256

23.1.3 Analytical Example 257

23.1.4 Numerical Derivatives 257

23.2 Practice 259

23.2.1 Example Code 259

23.2.2 Example Output 265

References 270

24 Cauchy Extension 271

24.1 Background 271

24.2 Theory 272

24.2.1 Two Dimensions 272

24.2.2 Three Dimensions 272

24.2.3 Singularity 273

24.2.4 The Taming Function 273

24.2.5 Construction 274

24.3 Practice 276

24.3.1 Example Code 276

24.3.2 Example Output 281

References 284

25 Electromagnetic Scattering 285

25.1 Background 285

25.2 Theory 286

25.3 Practice 288

25.3.1 Example Code 288

25.3.2 Example Output 289

References 293

Part IV Programming 295

26 Interfaces 297

26.1 Configuration and Observation 297

26.1.1 Management 297

26.1.2 Printing 298

26.2 Simple Entities 300

26.2.1 Units 300

26.2.2 Components 300

26.2.3 Numbers 302

26.2.3.1 Establishing and Recovering Values 302

26.2.3.2 Functions 303

26.2.3.3 Addition and Subtraction 304

26.2.3.4 Multiplication 304

26.2.3.5 Geometric 305

26.2.3.6 Filtering 305

26.3 Higher Entities 306

26.3.1 Vectors 306

26.3.2 Bicomplex Numbers 307

26.3.3 Quaternions 307

26.3.4 Pauli Matrices 308

26.3.5 Electromagnetic Fields 308

26.4 Multiple Entities 309

26.4.1 Arrays 309

26.4.2 Fast Fourier Transforms 309

26.4.3 Series 310

26.4.4 Matrices 310

Reference 311

27 Descriptions 313

27.1 Arguments 313

27.2 Data types 313

27.3 Formats 315

27.4 Manual Pages 316

27.4.1 A–e 316

27.4.2 F–j 342

27.4.3 K–o 369

27.4.4 P–t 387

27.4.5 U–z 468

27.5 Quick Reference 477

Reference 487

A Key to Example Code and Results 489

Index 493

Erscheinungsdatum
Verlagsort New York
Sprache englisch
Maße 185 x 251 mm
Gewicht 1049 g
Themenwelt Mathematik / Informatik Informatik Software Entwicklung
Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Angewandte Mathematik
Naturwissenschaften Physik / Astronomie
ISBN-10 1-394-17324-5 / 1394173245
ISBN-13 978-1-394-17324-2 / 9781394173242
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Deterministische und randomisierte Algorithmen

von Volker Turau; Christoph Weyer

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 89,95
Programmieren erlernen und technische Fragestellungen lösen

von Harald Nahrstedt

Buch | Softcover (2023)
Springer Vieweg (Verlag)
CHF 62,95