Periodic Monopoles and Difference Modules
Springer International Publishing (Verlag)
978-3-030-94499-5 (ISBN)
The theory of periodic monopoles of GCK type has applications to Yang-Mills theory in differential geometry and to the study of difference modules in dynamical algebraic geometry. A complete account of the theory is given, including major generalizations of results due to Charbonneau, Cherkis, Hurtubise, Kapustin, and others, and a new and original generalization of the nonabelian Hodge correspondence first studied by Corlette, Donaldson, Hitchin and Simpson.
This work will be of interest to graduatestudents and researchers in differential and algebraic geometry, as well as in mathematical physics.
lt;b>Takuro Mochizuki has been awarded the 2022 Breakthrough Prize in Mathematics for advancing the understanding of holonomic D-modules through his research on harmonic bundles and twister D-modules, which he has studied at the "interface of algebraic geometry and differential geometry".
. - Introduction. - Preliminaries. - Formal Difference Modules and Good Parabolic Structure. - Filtered Bundles. - Basic Examples of Monopoles Around Infinity. - Asymptotic Behaviour of Periodic Monopoles Around Infinity. - The Filtered Bundles Associated with Periodic Monopoles. - Global Periodic Monopoles of Rank One. - Global Periodic Monopoles and Filtered Difference Modules. - Asymptotic Harmonic Bundles and Asymptotic Doubly Periodic Instantons (Appendix).
Erscheinungsdatum | 26.02.2022 |
---|---|
Reihe/Serie | Lecture Notes in Mathematics |
Zusatzinfo | XVIII, 324 p. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 524 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Naturwissenschaften ► Physik / Astronomie | |
Schlagworte | -Connections • DifferenceModule • Kobayashi-Hitchin Correspondence • Monopole • Parabolic Structure • λ-Connections |
ISBN-10 | 3-030-94499-9 / 3030944999 |
ISBN-13 | 978-3-030-94499-5 / 9783030944995 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich