Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Physics of Energy Sources (eBook)

eBook Download: PDF
2017 | 1. Auflage
424 Seiten
Wiley (Verlag)
978-1-118-69844-0 (ISBN)

Lese- und Medienproben

Physics of Energy Sources -  George C. King
Systemvoraussetzungen
47,99 inkl. MwSt
(CHF 46,85)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Physics of Energy Sourcesprovides readers with a balanced presentation of the fundamental physics needed to understand and analyze conventional and renewable energy sources including nuclear, solar, wind and water power. It also presents various ways in which energy can be stored for future use. The book is an informative and authoritative text for students in the physical sciences and engineering and is based on a lecture course given regularly by the author. 

With the ever increasing demand for sustainable, environmentally-friendly and reliable sources of energy, the need for scientists and engineers equipped to tackle the challenges of developing and improving upon commercially viable energy sources has never been more urgent. By focusing on the physical principles governing energy production, storage, and transmission, this book provides readers with a solid foundation in the science and technology of energy sources.

Physics of Energy Sources features include:

  • Analyses of conventional and renewable energy sources in terms of underlying physical principles
  • Integrated application of a wide range of physics, from classical to quantum physics
  • Coverage of nuclear, wind, wave, tidal, hydroelectric, geothermal and solar power, including many practical systems
  • Consideration of efficiency for power production as well as energy storage and transportation
  • Consideration of key environmental issues 
  • Worked examples in text, and problems & solutions to encourage understanding
  • Derivation of formulae with a minimum of mathematical complexity


George King is Emeritus Professor of Physics at the University of Manchester where he is a member of the Photon Physics Research Group. His area of research is Atomic and Molecular physics and he has published more than 200 papers in the scientific literature. He has taught a number of lecture courses in the School of Physics and Astronomy including the course Physics of Energy Sources. Professor King is author of Vibrations and Waves, which is also in the Manchester Physics Series. He has acted as External Examiner in Physics at a number of universities in both the UK and Ireland and as a scientific consultant to industry. He is married to Dr Michele Siggel-King who works in cancer research and his hobbies include playing and listening to music.


Physics of Energy Sourcesprovides readers with a balanced presentation of the fundamental physics needed to understand and analyze conventional and renewable energy sources including nuclear, solar, wind and water power. It also presents various ways in which energy can be stored for future use. The book is an informative and authoritative text for students in the physical sciences and engineering and is based on a lecture course given regularly by the author. With the ever increasing demand for sustainable, environmentally-friendly and reliable sources of energy, the need for scientists and engineers equipped to tackle the challenges of developing and improving upon commercially viable energy sources has never been more urgent. By focusing on the physical principles governing energy production, storage, and transmission, this book provides readers with a solid foundation in the science and technology of energy sources. Physics of Energy Sources features include: Analyses of conventional and renewable energy sources in terms of underlying physical principles Integrated application of a wide range of physics, from classical to quantum physics Coverage of nuclear, wind, wave, tidal, hydroelectric, geothermal and solar power, including many practical systems Consideration of efficiency for power production as well as energy storage and transportation Consideration of key environmental issues Worked examples in text, and problems & solutions to encourage understanding Derivation of formulae with a minimum of mathematical complexity

George King is Emeritus Professor of Physics at the University of Manchester where he is a member of the Photon Physics Research Group. His area of research is Atomic and Molecular physics and he has published more than 200 papers in the scientific literature. He has taught a number of lecture courses in the School of Physics and Astronomy including the course Physics of Energy Sources. Professor King is author of Vibrations and Waves, which is also in the Manchester Physics Series. He has acted as External Examiner in Physics at a number of universities in both the UK and Ireland and as a scientific consultant to industry. He is married to Dr Michele Siggel-King who works in cancer research and his hobbies include playing and listening to music.

Physics of Energy Sources 3
Contents 9
Editors preface to the Manchester Physics Series 13
Authors preface 15
1 Introduction 17
1.1 Energy consumption 17
1.2 Energy sources 19
1.3 Renewable and non-renewable energy sources 21
1.4 The form and conversion of energy 22
1.4.1 Thermal energy sources 23
1.4.2 Mechanical energy sources 23
1.4.3 Photovoltaic sources 23
1.4.4 Energy storage 24
Problems 1 25
2 The atomic nucleus 27
2.1 The composition and properties of nuclei 28
2.1.1 The composition of nuclei 28
2.1.2 The size of a nucleus 30
2.1.3 The distributions of nuclear matter and charge 35
2.1.4 The mass of a nucleus 37
2.1.5 The charge of a nucleus 40
2.1.6 Nuclear binding energy 43
2.1.7 Binding energy curve of the nuclides 46
2.1.8 The semi-empirical mass formula 48
2.2 Nuclear forces and energies 51
2.2.1 Characteristics of the nuclear force 51
2.2.2 Nuclear energies 52
2.2.3 Quantum mechanical description of a particle in a potential well 55
2.3 Radioactivity and nuclear stability 63
2.3.1 Segré chart of the stable nuclides 64
2.3.2 Decay laws of radioactivity 65
2.3.3 ?, ? and ? decay 73
Problems 2 83
3 Nuclear power 87
3.1 How to get energy from the nucleus 87
3.2 Nuclear reactions 89
3.2.1 Nuclear reactions 89
3.2.2 Q-value of a nuclear reaction 90
3.2.3 Reaction cross-sections and reaction rates 92
3.3 Nuclear fission 98
3.3.1 Liquid-drop model of nuclear fission 99
3.3.2 Induced nuclear fission 102
3.3.3 Fission cross-sections 103
3.3.4 Fission reactions and products 104
3.3.5 Energy in fission 106
3.3.6 Moderation of fast neutrons 108
3.3.7 Uranium enrichment 109
3.4 Controlled fission reactions 113
3.4.1 Chain reactions 113
3.4.2 Control of fission reactions 117
3.4.3 Fission reactors 119
3.4.4 Commercial nuclear reactors 121
3.4.5 Nuclear waste 123
3.5 Nuclear fusion 125
3.5.1 Fusion reactions 126
3.5.2 Energy in fusion 127
3.5.3 Coulomb barrier for nuclear fusion 129
3.5.4 Fusion reaction rates 129
3.5.5 Performance criteria 131
3.5.6 Controlled thermonuclear fusion 133
Problems 3 139
4 Solar power 143
4.1 Stellar fusion 144
4.1.1 Star formation and evolution 144
4.1.2 Thermonuclear fusion in the Sun: the proton–proton cycle 147
4.1.3 Solar radiation 148
4.2 Blackbody radiation 150
4.2.1 Laws of blackbody radiation 151
4.2.2 Emissivity 153
4.2.3 Birth of the photon 157
4.3 Solar radiation and its interaction with the Earth 161
4.3.1 Characteristics of solar radiation 161
4.3.2 Interaction of solar radiation with Earth and its atmosphere 163
4.3.3 Penetration of solar energy into the ground 171
4.4 Geothermal energy 175
4.4.1 Shallow geothermal energy 176
4.4.2 Deep geothermal energy 177
4.5 Solar heaters 178
4.5.1 Solar water heaters 178
4.5.2 Heat transfer processes 181
4.5.3 Solar thermal power systems 188
4.6 Heat engines: converting heat into work 190
4.6.1 Equation of state of an ideal gas 191
4.6.2 Internal energy, work and heat: the first law of thermodynamics 193
4.6.3 Specific heats of gases 197
4.6.4 Isothermal and adiabatic expansion 199
4.6.5 Heat engines and the second law of thermodynamics 201
Problems 4 212
5 Semiconductor solar cells 217
5.1 Introduction 217
5.2 Semiconductors 220
5.2.1 The band structure of crystalline solids 220
5.2.2 Intrinsic and extrinsic semiconductors 224
5.3 The p–n junction 230
5.3.1 The p–n junction in equilibrium 230
5.3.2 The biased p–n junction 233
5.3.3 The current–voltage characteristic of a p–n junction 235
5.3.4 Electron and hole concentrations in a semiconductor 238
5.3.5 The Fermi energy in a p–n junction 243
5.4 Semiconductor solar cells 245
5.4.1 Photon absorption at a p–n junction 245
5.4.2 Power generation by a solar cell 247
5.4.3 Maximum power delivery from a solar cell 251
5.4.4 The Shockley–Queisser limit 254
5.4.5 Solar cell construction 256
5.4.6 Increasing the efficiency of solar cells and alternative solar cell materials 259
Problems 5 264
6 Wind power 267
6.1 A brief history of wind power 267
6.2 Origin and directions of the wind 269
6.2.1 The Coriolis force 269
6.3 The flow of ideal fluids 272
6.3.1 The continuity equation 273
6.3.2 Bernoullis equation 274
6.4 Extraction of wind power by a turbine 279
6.4.1 The Betz criterion 281
6.4.2 Action of wind turbine blades 284
6.5 Wind turbine design and operation 287
6.6 Siting of a wind turbine 293
Problems 6 296
7 Water power 299
7.1 Hydroelectric power 300
7.1.1 The hydroelectric plant and its principles of operation 300
7.1.2 Flow of a viscous fluid in a pipe 302
7.1.3 Hydroelectric turbines 304
7.2 Wave power 307
7.2.1 Wave motion 308
7.2.2 Water waves 322
7.2.3 Wave energy converters 335
7.3 Tidal power 340
7.3.1 Origin of the tides 341
7.3.2 Variation and enhancement of tidal range 351
7.3.3 Harnessing tidal power 357
Problems 7 362
8 Energy storage 365
8.1 Types of energy storage 366
8.2 Chemical energy storage 367
8.2.1 Biological energy storage 367
8.2.2 Hydrogen energy storage 367
8.3 Thermal energy storage 368
8.4 Mechanical energy storage 371
8.4.1 Pumped hydroelectric energy storage 371
8.4.2 Compressed air energy storage 373
8.4.3 Flywheel energy storage 377
8.5 Electrical energy storage 380
8.5.1 Capacitors and super-capacitors 381
8.5.2 Superconducting magnetic storage 383
8.5.3 Rechargeable batteries 384
8.5.4 Fuel cells 386
8.6 Distribution of electrical power 388
Problems 8 390
Solutions to problems 393
Problems 1 393
Problems 2 393
Problems 3 396
Problems 4 398
Problems 5 402
Problems 6 405
Problems 7 407
Problems 8 409
Index 413
EULA 422

Erscheint lt. Verlag 17.3.2017
Reihe/Serie Manchester Physics Series
The Manchester Physics Series
The Manchester Physics Series
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Atom- / Kern- / Molekularphysik
Naturwissenschaften Physik / Astronomie Festkörperphysik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte alternate energy sources • alternate energy sources physical principles • Deep Geothermal Energy • Elektronische Materialien • Energie • Energy • energy conversion physical principles • energy sources • energy source thermodynamics • Erneuerbare Energien • Fission Reactor Physics • geothermal power physical principles • Halbleiterphysik • heated plasma power physics • heat transfer physics • hydroelectric power physics • Materialien f. Energiesysteme • Materials for Energy Systems • Materials Science • Materialwissenschaften • nuclear fission power quantum physics • nuclear fusion power quantum physics • nuclear power physics • nuclear power quantum physics • nuclear power thermodynamics • Physics • Physik • power generation physics • power storage physics • power transmission physics • renewable energy • renewable energy physics • Renewable energy sources • Semiconductor physics • semiconductor solar cell physics • shallow geothermal energy • solar power quantum physics • solar power thermodynamics • solar thermal power physics • wind power and bernoulli’s equation • wind power and the coriolis force
ISBN-10 1-118-69844-4 / 1118698444
ISBN-13 978-1-118-69844-0 / 9781118698440
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 24,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen und Anwendungen

von Reinhold Kleiner; Werner Buckel

eBook Download (2024)
Wiley-VCH (Verlag)
CHF 69,35