Multimodal Neuroimaging Computing for the Characterization of Neurodegenerative Disorders (eBook)
XXV, 136 Seiten
Springer Singapore (Verlag)
978-981-10-3533-3 (ISBN)
Sidong Liu received his Bachelor Degree in Bioinformatics from Harbin Institute of Technology (HIT) in 2007. He then obtained a Master of Applied Science with a major in Bioinformatics in 2009, and a Master of IT with a major in Computer Science at the University of Sydney. He conducted his PhD study with a focus on medical image computing in the Biomedical and Multimedia Information Technology(BMIT) Research Group at the School of Information Technologies, the University of Sydney.
During his PhD study, supported by an Australian Postgraduate Award (APA),
Australia Alzheimer's Disease Research Foundation (AADRF) Top-up Scholarship
and Australia Sydney University Graduates Union North America (SUGUNA) Travel
Grant, he spent one year at the Surgical Planning Laboratory (SPL), Harvard Medical School, as a visiting scholar in 2014. He was awarded a PhD Degree in Dec 2015, and his PhD thesis has received the Springer Thesis Award. He is currently a postdoctoral research fellow with School of Information Technologies, the University of Sydney. His research interests include neuroimage computing, computational neuroscience, biomedical and health informatics, machine learning and big data analytics and its applications in biomedicine.
This thesis covers various facets of brain image computing methods and illustrates the scientific understanding of neurodegenerative disorders based on four general aspects of multimodal neuroimaging computing: neuroimaging data pre-processing, brain feature modeling, pathological pattern analysis, and translational model development. It demonstrates how multimodal neuroimaging computing techniques can be integrated and applied to neurodegenerative disease research and management, highlighting relevant examples and case studies. Readers will also discover a number of interesting extension topics in longitudinal neuroimaging studies, subject-centered analysis, and the brain connectome. As such, the book will benefit all health informatics postgraduates, neuroscience researchers, neurology and psychiatry practitioners, and policymakers who are interested in medical image computing and computer-assisted interventions.<
Sidong Liu received his Bachelor Degree in Bioinformatics from Harbin Institute of Technology (HIT) in 2007. He then obtained a Master of Applied Science with a major in Bioinformatics in 2009, and a Master of IT with a major in Computer Science at the University of Sydney. He conducted his PhD study with a focus on medical image computing in the Biomedical and Multimedia Information Technology(BMIT) Research Group at the School of Information Technologies, the University of Sydney.During his PhD study, supported by an Australian Postgraduate Award (APA),Australia Alzheimer’s Disease Research Foundation (AADRF) Top-up Scholarshipand Australia Sydney University Graduates Union North America (SUGUNA) TravelGrant, he spent one year at the Surgical Planning Laboratory (SPL), Harvard Medical School, as a visiting scholar in 2014. He was awarded a PhD Degree in Dec 2015, and his PhD thesis has received the Springer Thesis Award. He is currently a postdoctoral research fellow with School of Information Technologies, the University of Sydney. His research interests include neuroimage computing, computational neuroscience, biomedical and health informatics, machine learning and big data analytics and its applications in biomedicine.
Introduction.- Background.- Datasets and Pre-processing.- Neurodegenerative Feature Modeling and Learning.- Neurodegenerative Pattern Analysis.- Alzheimer’s Disease Staging and Prediction.- Neuroimaging Content-Based Retrieval.- Conclusions and Future Directions.
Erscheint lt. Verlag | 11.1.2017 |
---|---|
Reihe/Serie | Springer Theses | Springer Theses |
Zusatzinfo | XXV, 136 p. 35 illus., 14 illus. in color. |
Verlagsort | Singapore |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Betriebssysteme / Server |
Informatik ► Grafik / Design ► Digitale Bildverarbeitung | |
Informatik ► Software Entwicklung ► User Interfaces (HCI) | |
Mathematik / Informatik ► Informatik ► Theorie / Studium | |
Naturwissenschaften ► Biologie ► Humanbiologie | |
Naturwissenschaften ► Biologie ► Zoologie | |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | ADNI Datasets • Biomedical Pattern Analysis • Brain Connectome • Brain Function Mapping • Brain Image Analysis • brain informatics • Computer-aided Diagnosis • Medical Image Computing • Neurodegenerative Patterns • Neuroimaging Content-Based Retrieval • representation learning |
ISBN-10 | 981-10-3533-4 / 9811035334 |
ISBN-13 | 978-981-10-3533-3 / 9789811035333 |
Haben Sie eine Frage zum Produkt? |
Größe: 5,8 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich