Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Asymptotic Expansion of a Partition Function Related to the Sinh-model

Buch | Hardcover
XV, 222 Seiten
2016 | 1st ed. 2016
Springer International Publishing (Verlag)
978-3-319-33378-6 (ISBN)

Lese- und Medienproben

Asymptotic Expansion of a Partition Function Related to the Sinh-model - Gaëtan Borot, Alice Guionnet, Karol K. Kozlowski
CHF 74,85 inkl. MwSt
This book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables. The introduction presents the underpinning motivations for this problem, a historical overview, and a summary of the strategy, which is applicable in greater generality. The core aims at proving an expansion up to o(1) for the logarithm of the partition function of the sinh-model. This is achieved by a combination of potential theory and large deviation theory so as to grasp the leading asymptotics described by an equilibrium measure, the Riemann-Hilbert approach to truncated Wiener-Hopf in order to analyse the equilibrium measure, the Schwinger-Dyson equations and the boostrap method to finally obtain an expansion of correlation functions and the one of the partition function. This book is addressed to researchers working in random matrices, statistical physics or integrable systems, or interested in recent developments of asymptotic analysis in those fields.

Gaëtan Borot graduated at ENS Paris in theoretical physics, did his PhD at CEA Saclay, and is now a W2 Group Leader at the Max Planck Institute for Mathematics in Bonn. He was also a visiting scholar at MIT, collaborating with Alice Guionnet on the asymptotic analysis of random matrix models. He is working on the mathematical aspects of geometry and physics, ranging from statistical physics, random matrices, integrable systems, enumerative geometry, topological quantum field theories, etc.Alice Guionnet is Director of research CNRS at École Normale Supérieure (ENS) Lyon, from MIT where she served as a professor in 2012-2015. She received the MS from ENS Paris in 1993 and the PhD, under the guidance of G. Ben Arous at Université Paris Sud in 1995.

Introduction.- Main results and strategy of proof.- Asymptotic expansion of ln ZN[V], the Schwinger-Dyson equation approach.- The Riemann-Hilbert approach to the inversion of SN.- The operators WN and U-1N.- Asymptotic analysis of integrals.- Several theorems and properties of use to the analysis.- Proof of Theorem 2.1.1.- Properties of the N-dependent equilibrium measure.- The Gaussian potential.- Summary of symbols.

"The main task of the book is to develop an effective method to obtain asymptotic expansions for certain rescaled multiple integrals. ... The book contains five appendices which complement the main results obtained. The book is addressed to researchers working in random matrices, statistical physics or integrable systems, or interested in recent developments of asymptotic analysis in those fields." (Horacio Grinberg, Mathematical Reviews, August, 2017)

Erscheinungsdatum
Reihe/Serie Mathematical Physics Studies
Zusatzinfo XV, 222 p. 4 illus.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften Physik / Astronomie Theoretische Physik
Naturwissenschaften Physik / Astronomie Thermodynamik
Schlagworte Algebraic Bethe Ansatz • concentration of measure • Gaussian potential • KPZ models • loop equations • Mathematical methods in physics • Mathematical Physics • mathematics and statistics • Potential Theory • Probability theory and stochastic processes • quantum separation of variables • quantum Toda chain • Random Matrix Theory • Riemann-Hilbert problem • Schwinger-Dyson equation • Selberg integral • separation of variables • six-vertex model • Statistical Physics, Dynamical Systems and Complex • Toda lattice • XXZ chains
ISBN-10 3-319-33378-X / 331933378X
ISBN-13 978-3-319-33378-6 / 9783319333786
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Jim Sizemore; John Paul Mueller

Buch | Softcover (2024)
Wiley-VCH (Verlag)
CHF 39,20
Beschreibende Statistik – Wahrscheinlichkeitsrechnung – Schließende …

von Günther Bourier

Buch | Softcover (2024)
Springer Fachmedien Wiesbaden GmbH (Verlag)
CHF 53,15