Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Low-Dimensional and Nanostructured Materials and Devices (eBook)

Properties, Synthesis, Characterization, Modelling and Applications
eBook Download: PDF
2015 | 1st ed. 2016
XXVII, 674 Seiten
Springer International Publishing (Verlag)
978-3-319-25340-4 (ISBN)

Lese- und Medienproben

Low-Dimensional and Nanostructured Materials and Devices -
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book focuses on the fundamental phenomena at nanoscale. It covers synthesis, properties, characterization and computer modelling of nanomaterials, nanotechnologies, bionanotechnology, involving nanodevices. Further topics are imaging, measuring, modeling and manipulating of low dimensional matter at nanoscale. The topics covered in the book are of vital importance in a wide range of modern and emerging technologies employed or to be employed in most industries, communication, healthcare, energy, conservation , biology, medical science, food, environment, and education, and consequently have great impact on our society.

Preface 7
Contents 10
Contributors 21
1 Modelling of Heterostructures for Low Dimensional Devices 26
Abstract 26
1.1 Introduction 27
1.2 Issues in Modelling of Electronic Structure in Heterostructures 30
1.2.1 Interface Strain Effects in Heterostructures 31
1.2.2 Composition Effects in Heterostructures 35
1.3 Semiempirical Tight Binding Modeling of Heterostructures 37
1.3.1 Semiempirical Sp3 Tight Binding Modeling 38
1.3.2 Semiempirical Sp3s* Tight Binding Modeling 46
1.3.3 Semiempirical Sp3d5s* Tight Binding Modeling 52
1.3.4 Semiempirical Sp3d5 Tight Binding Modeling 55
1.4 Density Functional Theory Modelling of Heterostructures 57
1.5 Modeling of Band Offsets in Heterostructures 65
1.6 Conclusion 70
References 71
2 Aspects of the Modeling of Low Dimensional Quantum Systems 73
Abstract 73
2.1 Introduction 73
2.2 3D Harmonic Oscillator with a Superposed Quantum Dot (Fig. 2.1) 75
2.3 Double Quantum Dot Systems in Low Dimensions 77
2.4 Quantum Wire on a 2D Sheet in a Uniform Magnetic Field 80
2.5 Inverse Dielectric Function of a Periodic Superlattice 83
2.6 An Impenetrable Barrier: Quantum Particle Dynamics in a Highly Singular 1D-Potential 88
References 94
3 Wave Propagation and Diffraction Through a Subwavelength Nano-Hole in a 2D Plasmonic Screen 96
Abstract 96
3.1 Introduction 96
3.2 Scalar Green's Function for a 2D Plasmonic Layer with a Nano-Hole Aperture Embedded in a 3D Bulk Host Medium 97
3.3 Scalar Field Response of a Perforated 2D Plasmonic Layer to an Incident Wave {/bf U_{0}} {/bf (r,/omega )} : Transmission 102
3.4 Numerical Analysis of Helmholtz Scalar Wave Propagation in the Vicinity of a Perforated Plasmonic Layer with a Nano-Hole 109
3.5 Summary 126
Acknowledgments 126
References 127
4 The Challenge to Develop Metrology at the Nanoscale 128
Abstract 128
4.1 Metrology 128
4.2 Nanotechnology Generations, Definitions, and Visions 131
4.3 Nanotechnology Research Drives 132
4.3.1 The Semiconductor Industry 132
4.3.2 The Healthcare Industry 133
4.4 Nanotechnology Artefacts 134
4.5 Nanomaterials Measurement Challenges 135
4.6 Nanomaterials Instruments 136
4.6.1 Spectroscopic Ellipsometry (SE) 137
4.6.1.1 Main Measurement Uncertainty Contributions 138
4.6.2 Metrological AFM 138
4.6.2.1 Main Measurement Uncertainty Contributions 140
4.6.3 Scanning Electron Microscopy (SEM) 140
4.6.3.1 Main Measurement Uncertainty Contributions 141
4.7 Other Methods for Dimensional Nanometrology 141
4.7.1 X-ray Interferometry (XRI) 142
4.7.2 Small Angle X-ray Scattering Diffractometer (SAXS) 143
4.7.3 Electron/X-ray Diffraction 144
4.7.4 Raman Spectroscopy as a Nanometrology Tool 144
4.8 The Challenge for Nanometrology 145
4.9 Conclusion 146
Acknowledgments 147
References 147
5 Terahertz Devices and Systems for the Spectroscopic Analysis of Biomolecules---``Complexity Great and Small'' 154
Abstract 154
5.1 Introduction 154
5.2 THz Time Domain Spectroscopy 155
5.3 Small Complexity---Simple Polar Liquids 157
5.4 Great Complexity---Proteins 161
5.5 Conclusions 170
References 170
6 Recent Progress in XAFS Study for Semiconducting Thin Films 172
Abstract 172
6.1 Introduction 172
6.2 XAFS Spectroscopy: Basic Theory and Measurements 173
6.2.1 Basic Theory of XAFS 173
6.2.2 Measurements of XAFS 177
6.3 Application to Semiconducting Thin Films 178
6.3.1 c-Plane InGaN SQWs 178
6.3.2 c-Plane InGaN MQW 181
6.3.3 m-Plane InGaN Thin Film 182
6.3.4 m-Plane AlGaN Thin Films 184
6.3.5 c-Plane MgZnO Thin Film 187
6.4 Summary 191
Acknowledgments 191
References 191
7 Pulsed-Laser Generation of Nanostructures 193
Abstract 193
7.1 Introduction 193
7.2 Self-formation of Nanostructures Through Pulsed-Laser Ablation 194
7.3 Formation of Nanoscale Patterns by Femtosecond Laser Ablation 195
7.3.1 General Principles 195
7.3.2 Femtosecond Laser Nanomachining on Thin Films with Bessel Beams 197
7.3.3 Experimental Results 199
7.4 Conclusions 200
References 201
8 Graphene for Silicon Microelectronics: Ab Initio Modeling of Graphene Nucleation and Growth 203
Abstract 203
8.1 Introduction 203
8.2 Approach 205
8.3 Carbon on Graphene 206
8.4 Silicon on Graphene 208
8.5 Carbon on h-BN 210
8.6 Carbon on Mica 212
8.7 Graphene Base Transistor 216
8.8 Carbon on Germanium 218
8.9 Summary and Conclusions 223
Acknowledgments 224
References 224
9 Recent Progress on Nonlocal Graphene/Surface Plasmons 226
Abstract 226
9.1 Introduction 227
9.2 Nonlocal Dielectric Response of a Slab Plasma 227
9.3 2D Plasma Coulomb-Coupled with a Slab Plasma 235
9.4 Numerical Results for Plasmon Dispersion: Graphene Layers Interacting with Semi-infinite Conductor 238
9.5 Experimental Studies on Epitaxial Graphene 242
9.6 Influence of Adsorbed and Intercalated Atoms 248
9.7 Concluding Remarks 250
Acknowledgments 250
Appendix 1: Dynamic Nonlocal Polarization Function for Free-Standing Graphene with no Bandgap Brief Summary of the Results Derived in [19, 20]
Appendix 2: Dynamic Nonlocal Polarization Function for Graphene with a Finite Energy Bandgap Brief Summary of the Results Derived in [18]
References 255
10 Semiconducting Carbon Nanotubes: Properties, Characterization and Selected Applications 259
Abstract 259
10.1 Introduction to Carbon Nanotubes 259
10.2 CNTs Synthesis 264
10.3 Carbon Nanotubes Applications 266
10.3.1 Selected Applications of Semiconducting CNTs 266
10.3.2 CNTs for Photovoltaic Applications 267
10.3.3 CNT Interaction with Gases: From Surface Chemistry to Devices 270
References 277
11 Effects of Charging and Perpendicular Electric Field on Graphene Oxide 280
Abstract 280
11.1 Introduction 281
11.2 Methodolgy 281
11.3 Theoretical Investigations of Charged Nanosystems 282
11.4 Interaction of H2O, OH, O and H with Graphene 286
11.4.1 Binding of H2O to Graphene 286
11.4.2 Binding of OH to Graphene 286
11.4.3 Binding of O to Graphene 288
11.4.4 Binding of H and H2 to Graphene 288
11.5 Effects of an Electric Field and Charging 289
11.5.1 Effects of an Electric Field and Charging on Adsorbed O 289
11.5.2 Effects of an Electric Field and Charging on Adsorbed OH 294
11.6 Desorption of Oxygen from GOX 297
11.6.1 Formation of Oxygen Molecule 297
11.6.2 Interaction Between Adsorbed H and O 299
11.6.3 Interaction Between Adsorbed H and OH 301
11.6.4 Interaction Between Two OH Co-Adsorbed in Close Proximity 303
11.7 Conclusion 305
Acknowledgments 306
References 307
12 Structural and Optical Properties of Tungsten Oxide Based Thin Films and Nanofibers 310
Abstract 310
12.1 Introduction 310
12.1.1 Amorphous and Crystalline Tungsten Oxide Based Nanomaterials 311
12.2 Tungsten Oxide Based Nanomaterials 314
12.2.1 Tungsten Oxide Based Thin Films and Mesoporous Thin Films 315
12.2.2 Tungsten Oxide Based Nanofibers and Nanowires 317
12.2.2.1 Tungsten Oxide Fibers with Metallic Tungsten Precursor 318
12.2.2.2 Tungsten Oxide Fibers with Tungsten Hexachloride Precursor 320
12.3 Chromogenic Properties and Applications of Tungsten Oxide 322
12.3.1 Electrochromic Properties of Tungsten Oxide Films 322
12.3.2 Coloration Phenomena in WO3 324
12.4 Conclusions 324
References 324
13 Electron Accumulation in InN Thin Films and Nanowires 327
Abstract 327
13.1 Introduction 327
13.2 Fermi Level Pinning 329
13.3 Surface Electron Accumulation in InN Thin Films 330
13.4 Surface Charge Accumulation on InN NWs 335
13.5 Control of Surface Electron Accumulation in InN Nanowires 338
13.6 Conclusions 341
Acknowledgments 341
References 342
14 Optical and Structural Properties of Quantum Dots 345
Abstract 345
14.1 Introduction 346
14.2 CdSexS12212x Nanocrystals 346
14.3 Investigation of Raman Spectroscopy for CdTe Thin Film 347
14.3.1 Experimental Details 347
14.3.2 Modelling 348
14.3.3 Discussion 348
14.3.4 Importance of the Subject 349
14.3.5 Section Summary 349
14.4 Steady State Photoluminescence Spectroscopy 350
14.5 The Progression of Strain and Micro-electric Field Dependent Urbach Energy with Deposition Time in Chemical Bath Deposited CdS Thin Films 353
14.5.1 Experimental 353
14.5.1.1 Sample Preparation 353
14.5.1.2 Optical Absorption 354
14.5.1.3 SEM and EDS 355
14.5.1.4 XRD 357
14.5.1.5 Raman Spectroscopy 358
14.5.2 Modeling of the Urbach Tail 359
14.5.3 The Progression of Strain with Deposition Time 361
14.5.4 Section Conclusion 363
14.6 In Situ Low Temperature Optical Absorption Spectroscopy 364
Acknowledgements 365
References 365
15 One-Dimensional Nano-structured Solar Cells 369
Abstract 369
15.1 Introduction 370
15.2 One-Dimensional Nanostructures Based Solar Cell Architectures 370
15.3 Synthesis of One-Dimensional Nanostructures 373
15.3.1 Solution-Based Synthesis of 1-D Nanostructures 374
15.3.2 Vapor Phase-Based Synthesis of 1-D Nanostructures 377
15.3.2.1 Vapor-Liquid-Solid (VLS) Mechanism 377
15.3.2.2 Vapor-Solid (VS) Mechanism 379
15.4 Common Materials for 1-D Nano-Structured Solar Cells 379
15.4.1 Silicon 380
15.4.1.1 n-Si-NWs/p-AGIS Nanowires Embedded in a Thin Film Type Solar Cell 380
15.4.1.2 Si-NWs/PCBM Structured Hybrid Solar Cell 386
15.4.2 Zinc-Oxide 389
15.4.2.1 n-ZnO NWs/p-AGIS Heterojunction Based Thin Film Solar Cells 389
15.4.3 Titanium-Dioxide 394
15.4.3.1 n-TiO2/p-CdTe Core-Shell Structured Solar Cells 395
15.4.4 Carbon 398
15.4.4.1 Carbon Nanotubes 399
CNTs as Photoanode Material in DSCs 402
CNTs as Counter Electrode Material in DSCs 405
15.5 Summary and Future Outlook 407
References 409
16 Computational Studies of Bismuth-Doped Zinc Oxide Nanowires 419
Abstract 419
16.1 Introduction 419
16.2 Computational Modeling 421
16.2.1 Supercell Approach 421
16.2.2 Defect Calculations 422
16.2.3 Density- and Hybrid-Functional+U Calculations 426
16.2.4 Computational Settings 429
16.3 Structure and Energetics of ZnO Nanowires 430
16.4 Defect Energetics and Transition Levels in ZnO:Bi Nanowire 432
Acknowledgments 437
References 437
17 Mixed-Phase TiO2 Nanomaterials as Efficient Photocatalysts 440
Abstract 440
17.1 Introduction 441
17.2 Phases of TiO2 442
17.2.1 Structure Properties of Rutile, Anatase and Brookite 442
17.2.2 Stability and Phase Transformation 443
17.2.3 Photocatalytic Activity of Rutile, Anatase and Brookite 444
17.3 Synthesis of Mixed-Phase TiO2 Photocatalysts 446
17.3.1 Hydrothermal Method and Solvothermal Method 446
17.3.2 Microemulsion-mediated Solvothermal Method 451
17.3.3 Sol-Gel Method 453
17.3.4 Solvent Mixing and Calcination Method 454
17.3.5 High-Temperature Calcination Method 455
17.4 Applications of Mixed-Phase TiO2 in Photocatalysis 458
17.4.1 Photocatalytic Hydrogen Production 458
17.4.2 Photocatalytic Reduction of CO2 with Water on Mixed-Phase TiO2 461
17.4.3 Photocatalytic Degradation of Organic Pollutants on Mixed-Phase TiO2 463
17.5 Mechanism of the Enhanced Photocatalytic Activities by the Mixed-Phase TiO2 Photocatalysis 468
17.6 Conclusion and Outlook 473
References 474
18 Electrochemical Impedance Study on Poly(Alkylenedioxy)Thiophene Nanostructures: Solvent and Potential Effect 478
Abstract 478
18.1 Introduction 478
18.2 Experimental Details 481
18.2.1 Chemicals 481
18.2.2 Preparation of Carbon Fiber Microelectrode (CFME) 481
18.2.3 Apparatus and Procedure 481
18.3 Results and Discussion 482
18.3.1 Electropolymerization of ProDOT-Me2 on CFME 482
18.3.2 FTIR-ATR Characterisation of PProDOT-Me2 Film on CFME 483
18.3.3 Electrochemical Impedance Spectroscopy 484
18.3.4 Potential Effect on EIS of PProDOT-Me2/CFME Coated Electrode 485
18.3.5 Electrolyte and Solvent Effects on ProDOT-Me2 Coated CFMEs 486
18.3.6 Electrical Equivalent Circuit Modeling 489
18.3.7 Morphology of Nanoporous and Compact Conductive Polymer Coatings on Carbon Fiber 491
18.4 Conclusion 491
References 491
19 Application of Nanoporous Zeolites for the Removal of Ammonium from Wastewaters: A Review 494
Abstract 494
19.1 Introduction 494
19.2 Methodology 497
19.2.1 Batch Adsorption Studies 497
19.2.1.1 Equilibrium Isotherms 497
19.2.1.2 Kinetics and Thermodynamics 498
19.2.2 Column Adsorption Studies 499
19.2.2.1 Column Design Parameters 499
19.2.2.2 Bed Depth Service Time (BDST) Model 500
19.2.3 Modification of Zeolite 501
19.2.4 Synthesized Zeolites 502
19.2.5 Regeneration 504
19.3 Nanoporous Zeolites for Ammonium Removal from Wastewaters 505
19.3.1 Ammonium Adsorption Capacities and Other Parameters for Zeolites in the Batch Systems 505
19.3.2 Ammonium Removal from Wastewaters in the Batch and Column Systems 512
19.3.3 Ammonium Removal from Wastewaters in the Fixed Bed Systems 514
19.3.4 Ammonium Removal for Wastewater Treatment Systems Combined with Zeolites 515
19.4 Conclusions 518
References 518
20 Synthesis and Biological Applications of Quantum Dots 522
Abstract 522
20.1 Introduction 522
20.2 Synthesis of CdSe and CdSe/ZnS QDs 523
20.3 Design of CdSe and CdSe/ZnS QDs for Biological Applications 525
20.3.1 Ligand Exchange Process 526
20.3.2 Silanization Process 526
20.3.3 Amphiphilic Molecules 527
20.3.4 PEG and Phospholipid Micelle 528
20.3.5 Biomacromolecules 529
20.4 Biological Applications of QDs 531
20.4.1 In Vitro Targeting with Antibody Conjugation 532
20.4.2 In Vitro Targeting with Peptide Conjugation 534
20.4.3 In Vitro Targeting with Small Molecule Conjugation 535
20.4.4 In Vivo Applications of QDs 537
20.4.5 In Vivo Vascular Imaging 539
20.4.6 Förster Resonance Energy Transfer (FRET) Based Applications 540
20.5 Conclusions 542
Acknowledgments 543
References 543
21 Bionanotechnology: Lessons from Nature for Better Material Properties 552
Abstract 552
21.1 Introduction 552
21.2 Biomineralization 553
21.3 Biomimetic Proteins: Receptors, Catalysts, Channels 555
21.4 Optics/Biophotonics 556
21.5 Natural Adhesives 557
21.6 Biointerfaces 558
21.6.1 Self-cleaning Surfaces 559
21.6.2 Bioinspired Interfaces for Better Biocompatibility 560
21.7 Biomimetic Membranes 561
21.7.1 Cell Membrane Mimics 561
21.7.2 Membranes for Water Treatment 563
21.8 Hints from Nature for Endurance 563
21.9 Conclusions 565
References 566
22 Quantum Dots in Bionanotechnology and Medical Sciences: Power of the Small 571
Abstract 571
22.1 Introduction 571
22.2 Types and Characteristics of QDs 572
22.3 Advantages and Disadvantages of QDs 573
22.4 Synthesis of QDs 574
22.5 Toxicity 575
22.6 Surface Modification and Functionalization 576
22.6.1 Surface Coatings to Minimize Hydrodynamic Size 577
22.7 Biocompatibility in QDs (Bioconjugation) 578
22.8 Next Generation QDs (Silica, Carbon, Metal Nanocluster) 580
22.8.1 Metal Nanoclusters 580
22.8.2 Carbon Dots (C-Dots/GQDs) 580
22.8.3 Silicon Dots (Si QDs) 581
22.9 Applications of QDs in Bionanotechnology and Nanomedicine 581
22.9.1 Cell Labeling 581
22.9.2 In Vitro Imaging 582
22.9.2.1 FRET, QDs Used as Energy Donors 582
22.9.2.2 FRET QDs Used as Acceptors 582
22.9.2.3 CRET or BRET Using QDs as Acceptors 583
22.9.2.4 NSET Using QDs as Donors 583
22.9.2.5 CT Using QDs as Donors or Acceptors 583
22.9.3 In Vivo Imaging 584
22.9.3.1 Peptide-Conjugated QDs 584
22.9.3.2 Antibody Conjugated QDs 585
22.9.3.3 Ligand Conjugated QDs 585
22.9.3.4 High-Affinity Fusion Tag Targeting Approaches 585
22.9.3.5 Nonspecific Binding 586
22.10 Dual-Modality Imaging with QDs 587
22.10.1 Fluorescence/MRI 587
22.10.2 Fluorescence/CT 587
22.10.3 Fluorescence/PET 588
22.11 Conclusions 588
Acknowledgments 589
References 589
23 Nanomedicine 595
Abstract 595
23.1 Introduction 595
23.2 Nanopharmaceuticals 597
23.3 Diagnostic and Theranostic Nanomedicine 599
23.4 Ethics and Regulation 600
23.5 Conclusion 601
References 602
24 Microfluidics and Its Applications in Bionanotechnology 604
Abstract 604
24.1 Introduction to Bionanotechnology and Microfluidics 604
24.2 Microfluidic PCR Applications 607
24.3 Microfluidic DNA Microarray Systems 609
24.4 Microfluidic Applications in Electrophoresis 610
24.5 Microfluidic Bioreactors 612
24.6 Monitoring Microbial Behaviour by Microfluidics 614
24.7 The Use and Potential of Microfluidics in Microbial Strain Development 615
24.8 Microfluidic Applications in Single Cell Studies 617
24.9 Conclusions 617
Acknowledgments 618
References 618
25 Non-Markovian Dynamics of Qubit Systems: Quantum-State Diffusion Equations Versus Master Equations 623
Abstract 623
25.1 Introduction 623
25.2 Non-Markovian Quantum-State Diffusion Approach 624
25.3 Non-Markovian Master Equation Approach 629
25.4 Multiple-Qubit Systems 631
25.4.1 Two-Qubit Systems 633
25.4.2 Three-Qubit Systems 637
25.4.3 A Note on General N-Qubit Systems 641
25.5 Conclusion 642
Appendix 1 642
Appendix 2 644
Appendix 3 646
References 647
26 Computing with Emerging Nanotechnologies 649
Abstract 649
26.1 Introduction 649
26.2 Computing with Nano-crossbar Arrays 650
26.2.1 Implementing Boolean Logic Functions 652
26.2.1.1 Two-Terminal Switch Based Methodologies 653
26.2.1.2 Four-Terminal Switch Based Methodology 654
26.2.2 Defect Tolerance 657
26.2.2.1 The Algorithm for Diode and CMOS Based Logic 658
26.2.2.2 Defect Tolerance for Four-Terminal Switch Based Logic 662
26.2.3 Simulation Results 663
26.3 Stochastic Computing 666
26.3.1 Reducing Error Rates 668
26.3.1.1 Random Bit Assigning Method 668
26.3.1.2 Random Bit Shuffling Method 669
RBSM--RBAM Comparison for p1 = 1/2, p2 = 1/2 Bit Streams 669
RBSM--RBAM Comparison While 64-Bit Inputs p1 and p2 Changing 669
26.3.2 Error Free Stochastic Computing 671
26.3.2.1 Realizing Error Free Multiplication with 0.5 671
26.3.2.2 Generating Any Probability Value Without an Error 672
26.4 Conclusions 673
Acknowledgments 673
References 673
Index 675

Erscheint lt. Verlag 1.12.2015
Reihe/Serie NanoScience and Technology
NanoScience and Technology
Zusatzinfo XXVII, 674 p. 319 illus., 218 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Atom- / Kern- / Molekularphysik
Technik Maschinenbau
Schlagworte Biological applications of quantum dots • Electronic Properties of Low Dimensional • Growth of quantum dots • Laser-assisted formation of semiconductor • Microfluidics in bionanotechnology • MOCVD of low-dimensional structures • Nanomagnetism and spintronics • nanoparticles • Nanostructured materials for solar cells • Properties of oxide-based thin films • Semiconducting carbon nanotubes • semiconductors
ISBN-10 3-319-25340-9 / 3319253409
ISBN-13 978-3-319-25340-4 / 9783319253404
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 28,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen und Anwendungen

von Reinhold Kleiner; Werner Buckel

eBook Download (2024)
Wiley-VCH (Verlag)
CHF 69,35