Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Experimental Research in Earthquake Engineering (eBook)

EU-SERIES Concluding Workshop
eBook Download: PDF
2015 | 2015
XXVII, 614 Seiten
Springer International Publishing (Verlag)
978-3-319-10136-1 (ISBN)

Lese- und Medienproben

Experimental Research in Earthquake Engineering -
Systemvoraussetzungen
106,99 inkl. MwSt
(CHF 104,50)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

In this volume, top seismic experts and researchers from Europe and around the world, including the George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES) in the USA, present the most recent outcome of their work in experimental testing, as well as the results of the transnational access activities of external researchers who have used Europe's seven largest and most advanced seismic testing facilities in the framework of the Seismic Engineering Research Infrastructures for European Synergies (SERIES) Project financed by the European Commission in its 7th Framework Programme (2007-2013). This includes EU's largest reaction wall facility, EU's four largest shaking table laboratories and its two major centrifuges. The work presented includes state-of-the-art research towards the seismic design, assessment and retrofitting of structures, as well as the development of innovative research toward new fundamental technologies and techniques promoting efficient and joint use of the research infrastructures. The contents of this volume demonstrate the fruits of the effort of the European Commission in supporting research in earthquake engineering.



Fabio Taucer is Scientific Officer at the European Laboratory for Structural Assessment (ELSA) and works for the European Commission since 2001. He is responsible for the coordination of RTD European Projects in the field of earthquake engineering, with emphasis on Pre-Normative research in support to the Eurocodes. He received his MEng in Civil Engineering from the University of California at Berkeley in 1991. He has working experience both in research and industry, having worked at an international level in seismic design and retrofit of long span bridges. He is Editor of two European reports on large-scale experimental facilities, and of a set of seven European Reference Reports on Systemic Seismic Vulnerability and Risk Analysis.

Roberta Apostolska is professor at the University Ss Cyril and Methodius, Institute for Earthquake Engineering and Engineering Seismology (IZIIS) Skopje, Republic of Macedonia. Since June 2013 she is Scientific Officer-Detached National Expert at the European Commission, Joint Research Centre, ELSA, Ispra, Italy where she provides scientific and technical contribution in the context of the JRC support work to DG ENTR for implementation of the Eurocodes in the non-EU countries in the Balkan region. She received her Master Degree in 1995 and her PhD degree in 2003, both from the University of Ss Cyril and Methodius in Skopje. She has more than 20 years working experience both in research and education in the field of earthquake engineering with emphasise on seismic performance of building structures.

Fabio Taucer is Scientific Officer at the European Laboratory for Structural Assessment (ELSA) and works for the European Commission since 2001. He is responsible for the coordination of RTD European Projects in the field of earthquake engineering, with emphasis on Pre-Normative research in support to the Eurocodes. He received his MEng in Civil Engineering from the University of California at Berkeley in 1991. He has working experience both in research and industry, having worked at an international level in seismic design and retrofit of long span bridges. He is Editor of two European reports on large-scale experimental facilities, and of a set of seven European Reference Reports on Systemic Seismic Vulnerability and Risk Analysis.Roberta Apostolska is professor at the University Ss Cyril and Methodius, Institute for Earthquake Engineering and Engineering Seismology (IZIIS) Skopje, Republic of Macedonia. Since June 2013 she is Scientific Officer-Detached National Expert at the European Commission, Joint Research Centre, ELSA, Ispra, Italy where she provides scientific and technical contribution in the context of the JRC support work to DG ENTR for implementation of the Eurocodes in the non-EU countries in the Balkan region. She received her Master Degree in 1995 and her PhD degree in 2003, both from the University of Ss Cyril and Methodius in Skopje. She has more than 20 years working experience both in research and education in the field of earthquake engineering with emphasise on seismic performance of building structures.

Preface 6
In Memory of Prof Roy Severn 8
Acknowledgment 11
Contents 12
Contributors 17
Chapter-1 26
The George E. Brown, Jr., Network for Earthquake Engineering Simulation (NEES): Reducing the Impact of EQs and Tsunamis 26
1.1 Introduction 26
1.2 Research Accomplishments 27
1.3 NEES Cyberinfratructure and the NEEShub 30
1.4 International Collaborations 32
References 34
Chapter-2 35
A Faceted Lightweight Ontology for Earthquake Engineering Research Projects and Experiments 35
2.1 Introduction 35
2.2 Approach 36
2.3 Ontology Development 37
2.4 Ontology Representation 38
2.4.1 RDF 38
2.4.2 OWL 39
2.5 Existing Ontology/Thesaurus 39
2.5.1 WordNet 39
2.5.2 NEES Thesaurus 39
2.6 Ontology Integration 40
2.7 Experimental Set-Up 40
2.8 Results 41
2.9 Related Work 43
2.10 Conclusion 43
References 43
Chapter-3 44
The SERIES Virtual Database: Architecture and Implementation 44
3.1 Introduction 44
3.2 Architecture of the Virtual Database 45
3.2.1 Characteristics of the SERIES Virtual Database 45
3.2.2 Services Provided by the Nodes 47
3.2.3 Communication Between the Nodes and the Central Site 47
3.2.4 Large Files Download 48
3.3 Implementation of the Virtual Database 49
3.3.1 The Node 49
3.3.2 The Central Site 50
3.4 Security 51
3.5 Conclusions 52
References 53
Chapter-4 54
The SERIES Virtual Database: Exchange Data Format and Local/Central Databases 54
4.1 Introduction 54
4.2 The Exchange Data Format 55
4.3 Local Site Management of SERIES Virtual Database 58
4.3.1 Local Data Processing and Data Import Platform (DIP) 59
4.3.2 GUIDE Interface 63
4.4 SERIES Virtual Database for an External User 64
4.4.1 SERIES Virtual Database Working Principle 64
4.4.2 The Data Access Portal 66
4.5 Conclusions 70
References 71
Chapter-5 72
Qualification of Seismic Research Testing Facilities in Europe 72
5.1 Introduction 72
5.1.1 Why the Qualification? 72
5.1.2 The SERIES Project 74
5.1.3 NA2 Networking Activity—Qualification of Research Infrastructures 75
5.1.3.1 General Description of the Activity 75
5.1.3.2 Task NA2.1: Evaluation and Impact of Qualification of Experimental Facilities in Europe 76
5.1.3.3 Task NA2.2: Assessment of Testing Procedures and Standards Requirements 77
5.1.3.4 Task NA2.3: Criteria for Instrumentation and Equipment Management 77
5.1.3.5 Task NA2.4: Development and Implementation of a Common Protocol for Qualification 77
5.2 Acknowledgement of the European Situation 79
5.2.1 Introduction 79
5.3 The Common Protocol 81
5.3.1 The Road Map 81
5.3.2 The Draft Common Protocol Implementation 82
5.3.3 The Final Version of the Common Protocol 83
5.4 Conclusions 85
5.4.1 General Requirements 85
5.4.2 Specific Technical Requirements 85
5.4.3 European Standard Development 86
References 86
Chapter-6 88
Towards Faster Computations and Accurate Execution of Real-Time Hybrid Simulation 88
6.1 Introduction 88
6.2 Development I: Standalone RTHS System 90
6.3 Development II: An Efficient Equation Solver 92
6.4 Development III: TVC Implementation 95
6.5 Closure 102
References 102
Chapter-7 105
Pseudo-Dynamic Testing Based on Non-linear Dynamic Substructuring of a Reinforced Concrete Bridge 105
7.1 Introduction 105
7.2 Main Characteristics of Hybrid Simulations 106
7.3 The Reference OpenSEES FE Model 108
7.4 State Space Reduction of the RM 110
7.4.1 Nonlinear Dynamic Substructuring of Piers 111
7.4.2 Nonlinear Dynamic Substructuring of Isolator Elements 114
7.5 Validation of the Reduced Model of the Bridge 115
7.6 Simulation of a Consistent Degradation of the Bridge 117
7.7 Conclusions 118
References 119
Chapter-8 121
Geographically Distributed Continuous Hybrid Simulation Tests Using Shaking Tables 121
8.1 Introduction 121
8.2 Dorka’s Substructure Algorithm 122
8.2.1 Sub-Stepping 123
8.2.2 Error Force Compensation 124
8.2.3 Adaptation of the Algorithm for Multiple Testing Sites 124
8.2.4 Actuator Control 126
8.3 Continuous Time-Scaled Geographically Distributed Tests with Non-Linear Experimental Substructures 126
8.3.1 Description of the Test Set-Up 126
8.3.2 The Friction Device UHYDE-fbr 127
8.3.3 Numerical Models 129
8.3.4 Continuous Geographically Distributed Tests Using OpenFresco and NSEP Protocol 130
8.3.4.1 Validation of the Actuator Control with HYSTEC 131
8.3.4.2 Continuous Time-Scaled Continuous Tests 131
8.4 Large Numerical Models in Continuous Hybrid Simulation 134
8.5 Conclusions 135
References 137
Chapter-9 139
Hybrid Simulations of a Piping System Based on Model Reduction Techniques 139
9.1 Introduction 139
9.2 Main Characteristics and FE Analysis of the Piping System Under Investigation 140
9.2.1 General Dimensions 140
9.2.2 FE Modelling and Modal Analysis 141
9.2.3 Selection of Input Earthquake Loading 142
9.3 Substructuring and System of Equations of Motion 143
9.3.1 Substructuring 143
9.3.2 System of Equations of Motion 144
9.4 Model Reduction of Physical Substructure and Earthquake Forces 145
9.4.1 SEREP Reduction 145
9.4.2 Craig–Bampton Reduction 146
9.5 Integration Schemes and Hardware-Software Architecture 147
9.5.1 Integration Methods 147
9.5.1.1 The LSRT2 Method 147
9.5.2 Modified Generalized-? Method 148
9.5.3 Modification of the NS and Delay Compensation for RTs 148
9.5.4 Hardware-Software Architecture 149
9.6 Test Program and Experimental Set-Up 150
9.7 Main Experimental Results 151
9.8 Conclusions 153
References 153
Chapter-10 155
A Support Platform for Distributed Hybrid Testing 155
10.1 Introduction 155
10.2 The Celestina Framework 156
10.2.1 Networking Services 158
10.2.2 Definition Services 159
10.2.3 Testing Services 159
10.2.4 Services Implementation in the Nodes 160
10.3 A First Celestina Implementation 160
10.4 Conclusions 162
References 162
Chapter-11 163
Substructuring for Soil Structure Interaction Using a Shaking Table 163
11.1 Introduction 163
11.2 Benchmark SSI test 164
11.2.1 Experimental Components 164
11.2.2 Experiment 166
11.3 RTDS Test Method 167
11.3.1 Control Strategy 169
11.3.1.1 Proprietary Shaking Table Control 169
11.3.1.2 Delay Compensation 169
11.3.1.3 Full State Control via Simulation 171
11.3.2 RTDS for SSI 172
11.4 RTDH Test Method 175
11.4.1 Generalised Hybrid Modelling 177
11.4.2 Hybrid Simulation of the Benchmark 178
11.5 Summary 179
References 180
Chapter-12 181
On the Control of Shaking Tables in Acceleration Mode: An Adaptive Signal Processing Framework 181
12.1 Introduction 181
12.2 Description of the Method 182
12.2.1 Adaptive Identification 183
12.2.1.1 Delay Estimation 184
12.2.2 Adaptive Inverse Identification 186
12.3 Application 187
12.4 Conclusion 193
References 194
Chapter-13 195
Refined and Simplified Numerical Models of an Isolated Old Highway Bridge for PsD Testing 195
13.1 Introduction 195
13.2 Description of the Case Study 196
13.3 Development of a Refined Nonlinear Model in OpenSEES 197
13.3.1 Non-Linear Phenomena in the As-Built System 197
13.3.2 The FE Model of the “As Built” Viaduct 198
13.3.2.1 Strain Penetration Effect of Plain Steel Bars 198
13.3.2.2 Modeling of Non-Linear Shear Behaviour 199
13.3.3 The FE Model of the “Isolated” Viaduct 200
13.3.3.1 Non Linear Response of Isolators 201
13.4 Earthquake Response of the Bridge Structure 202
13.4.1 Performance Criteria 202
13.4.2 Earthquake Record Selection 203
13.4.3 Modal Analysis of the Viaduct 205
13.5 Numerical Analysis of the As-Built Model 206
13.5.1 Simulation of the Response for SLS 206
13.5.2 Simulation of the Seismic Test for ULS 206
13.6 Numerical Analysis of the Isolated Case 211
13.6.1 Simulation of the Response for Serviceability Limit State 211
13.6.2 Simulation of the Seismic Test for the Ultimate Limit State 212
13.7 Dynamic Substructuring of the OpenSEES FE Model of the Viaduct for PsD Testing Purposes 214
13.8 Conclusions 217
References 219
Chapter-14 221
Assessment of the Seismic Behaviour of a Retrofitted Old R.C. Highway Bridge Through PsD Testing 221
14.1 Introduction 221
14.2 Description of the Case Study 223
14.3 Pseudo-Dynamic Test Design 224
14.3.1 Testing Methods 224
14.3.2 Tests Specimens 226
14.3.3 Test Rig Configuration 226
14.3.4 Numerical Models of the Viaduct 228
14.3.5 Selection of Earthquake Input 231
14.3.6 Testing Program 231
14.4 Discussion of the Experimental Results 233
14.4.1 Cyclic Characterization of the FPS Isolator 234
14.4.1.1 Cyclic Tests Procedure 234
14.4.1.2 Tests for Different Cycling Velocities and Amplitudes 234
14.4.2 Static Characterization of the Specimens 235
14.4.3 Test Results on the Entire Viaduct 236
14.4.3.1 Test Results on the Non-Isolated Viaduct 236
14.4.3.2 Test Results on the Isolated Viaduct 241
14.5 Conclusions 247
References 248
Chapter-15 250
Full-scale Testing of Modern Unreinforced Thermal Insulation Clay Block Masonry Houses 250
15.1 Introduction 250
15.2 Experimental Setup 251
15.2.1 Mock-up Idealization and Geometry 251
15.2.2 Steel Foundations 253
15.2.3 Construction 253
15.2.4 Steel Ties 254
15.2.5 Material Parameters 254
15.2.6 Seismic Input Time-Histories 255
15.2.7 Instrumentation Plan 256
15.2.8 Testing Procedure 257
15.3 Preliminary Test Results 259
15.3.1 Qualitative Observations and Collapse Modes 259
15.3.2 Dynamic Characterization 261
15.3.3 Seismic Response 263
15.4 Conclusions 265
References 266
Chapter-16 268
Assessment of Innovative Solutions for Non-Load Bearing Masonry Enclosures 268
16.1 Introduction 268
16.2 Building Model Tests 269
16.2.1 Building Specimen and Test Setup 269
16.2.2 Input Signal and Test Sequence 273
16.2.3 Results and Discussion 274
16.2.3.1 Overall Response and Damage Evolution 274
16.2.3.2 Evolution of Modal Properties 277
16.2.3.3 Displacement Demand 280
16.2.3.4 Comparison with Previous Tests 281
16.3 Wall Panels Tests 283
16.3.1 Wall Panels Specimens and Test Setup 283
16.3.2 Input Signal and Test Sequence 286
16.4 Conclusions 287
References 288
Chapter-17 289
Seismic Behaviour of Thin-Bed Layered Unreinforced Clay Masonry Frames with T- or L-Shaped Piers 289
17.1 Introduction 289
17.2 Description of the Tested Specimens 290
17.2.1 Mechanical and Geometrical Characteristics of the Units 290
17.2.2 Description of the Specimens 291
17.2.3 Preliminary Assessment Design 293
17.3 Test Description 294
17.3.1 Axis Convention 294
17.3.2 Instrumentation of the Specimens 296
17.3.3 Testing Procedure 296
17.3.4 Excitation Waveforms for Seismic Tests 297
17.4 Test Results 299
17.4.1 Qualitative Observations 299
17.4.2 Natural Frequencies Identification 302
17.4.3 Modal Shapes 306
17.4.4 Seismic Behaviour 308
17.5 Conclusions 311
References 312
Chapter-18 314
Shake Table Testing of a Half-Scaled RC-URM Wall Structure 314
18.1 Introduction 314
18.2 Test Unit 315
18.3 Tests Conducted at EPFL in Preparation of the Shake Table Test 317
18.3.1 Instrumentation 319
18.3.2 Input Ground Motion 320
18.3.3 Shake Table Test 320
18.4 Conclusions 324
References 325
Chapter-19 326
Experimental and Numerical Investigation of Torsionally Irregular RC Shear Wall Buildings with Rutherma Breakers 326
19.1 Introduction 326
19.2 Description of ENISTAT Specimen 327
19.2.1 Geometry 327
19.2.2 Design of Specimen 329
19.2.3 Thermal Break Elements 329
19.2.4 Construction of the Specimen 329
19.3 Test Set-Up and Sequence 331
19.3.1 Test Set-Up 331
19.3.2 Instrumentation 331
19.3.3 Test Sequence 334
19.4 Results and Observations 335
19.4.1 Test Results 335
19.4.2 Damage Observations 339
19.5 Conclusions 343
References 344
Chapter-20 345
Assessment of the Seismic Response of Concentrically-Braced Steel Frames 345
20.1 Introduction 345
20.2 Experimental Aims and Methodology 346
20.2.1 Research Objectives 346
20.2.2 Methodology 347
20.2.3 Shake Table Experimental Programme 348
20.3 Test Frame and Specimens 351
20.3.1 Test Frame 351
20.3.2 Brace-Gusset Plate Specimens 353
20.4 Experimental Results 355
20.4.1 Frame Stiffness 357
20.4.2 Frame Drift and Brace Ductility 358
20.5 Conclusions 361
References 361
Chapter-21 363
Shaking Table Test Design to Evaluate Earthquake Capacity of a 3-Storey Building Specimen Composed of Cast-In-Situ Concrete Walls 363
21.1 Introduction 363
21.2 The Construction System 364
21.2.1 The Modular Panels 364
21.2.2 The Structural System Obtained and Its Features 365
21.3 Shaking Table Test: Design of the Structure 366
21.3.1 Comparison Between Demand Due To 1 g Spectral Acceleration and Capacity 367
21.3.2 Synthesis of the Predicted Behaviour 368
21.3.3 Transportation Phases 369
21.4 Instrumentation 370
21.5 Shaking-Table Tests 370
21.5.1 The Reference Seismic Input and the Test Program 370
21.5.2 Results 371
21.5.2.1 Experimental Frequencies 371
21.5.2.2 Cracking Pattern 372
21.5.2.3 Overstrengths 373
21.6 Conclusions 374
References 375
Chapter-22 377
High-Performance Composite-Reinforced Earthquake Resistant Buildings with Self-Aligning Capabilities 377
22.1 Introduction 377
22.2 Rigid BTC with Long Self-Tapping Screws and Beech Blocks 379
22.3 One Story Mock-Up 380
22.4 Frictional BTC 383
22.5 Scaled Three-Story Frame 386
22.6 Conclusion 389
References 390
Chapter-23 391
Experimental Study on Seismic Performance of Precast Concrete Shear Wall with Joint Connecting Beam Under Cyclic Loadings 391
23.1 Introduction 391
23.2 Experimental Programme 392
23.2.1 Specimen Design 392
23.2.2 Measurement and Test Procedure 394
23.3 Test Results 395
23.3.1 Overview 395
23.3.2 Hysteresis Behavior and Skeleton Curve 395
23.3.3 Lateral Strength 398
23.3.4 Ductility Evaluation 399
23.3.5 Strain Distribution of Reinforcements 400
23.3.6 Energy Dissipation 401
23.3.7 Stiffness Degradation 402
23.4 Conclusions 403
References 403
Chapter-24 405
The Importance of connections in Seismic Regions: Full-Scale Testing of a 3-Storey Precast Concrete Building 405
24.1 Introduction 405
24.2 The Mock Up 405
24.3 Testing Programme 409
24.4 Results 411
24.4.1 Prototype 1 411
24.4.2 Prototype 2 412
24.4.3 Prototype 3 414
24.4.4 Prototype 4 415
24.5 Modal Decomposition of Prototype’s Response 418
24.6 Conclusions 419
References 420
Chapter-25 422
Caisson Foundations Subjected to Seismic Faulting: Reduced-Scale Physical Modeling 422
25.1 Introduction 422
25.2 Physical Modeling Methodology 423
25.2.1 Problem Definition 423
25.2.2 Experimental Setup 425
25.2.3 Model Preparation and Instrumentation 426
25.3 Normal Faulting 427
25.3.1 Free-Field Normal Faulting 427
25.3.2 Fault Rupture–Caisson Interaction: s/B?=?0.16 428
25.3.3 Fault Rupture–Caisson Interaction: s/B?=?0.8 429
25.4 Reverse Faulting 429
25.4.1 Free-Field Reverse Faulting 429
25.4.2 Fault Rupture–Caisson Interaction: s/B?=???0.04 431
25.4.3 Fault Rupture–Caisson Interaction: s/B?=?0.66 433
25.5 Conclusions 435
References 436
Chapter-26 439
Development of New Infinite Element for Numerical Simulation of Wave Propagation in Soil Media 439
26.1 Introduction 439
26.2 Governing Equations of the Newly Developed Infinite Elements 441
26.3 Verification of the Infinite Element 444
26.3.1 Wave Propagation—One Dimensional Case 444
26.3.2 Wave Propagation—Two Dimensional Case 447
26.3.3 Soil Layer Simulation 448
26.4 Conclusion 451
References 451
Chapter-27 453
Analysis of the Dynamic Behaviour of Squat Silos Containing Grain-like Material Subjected to Shaking Table Tests—ASESGRAM Final Report 453
27.1 Introduction 453
27.2 Test Set-up 454
27.2.1 The Specimen: Geometry and Materials 454
27.2.2 The Test Instrumentation 457
27.2.3 The Test Sessions 457
27.2.4 The Test Input 458
27.3 Experimental Results 459
27.3.1 Frequency 459
27.3.2 Compaction of the Ensiled Material 460
27.3.3 Acceleration Sinusoidal Input 462
27.3.4 Acceleration Earthquake Input 463
27.3.5 Vertical Strains 463
27.3.6 Horizontal Strains 466
27.3.7 Change in the Physical Behaviour/Response for Increasing Peak Table Acceleration 467
27.3.8 Vertical and Horizontal Inputs in Phase 467
27.3.9 The Influence of the Wall-Grain Friction Coefficient 469
27.3.10 Bending Moments at the Base 469
27.4 Conclusions 472
References 473
Chapter-28 474
Multi-Building Interactions and Site-City Effect: An Idealized Experimental Model 474
28.1 Introduction 474
28.2 Theoretical Model for Soil-City Interactions: The City-Impedance Analysis 475
28.2.1 Homogenization of the City into a Surface Impedance 475
28.2.2 Features of the Resonant City-Impedance 476
28.2.3 Application to the Case of a City Lying on a Layer 478
28.3 Numerical Model for Soil-City Interactions: Hybrid BEM-FEM Analysis 480
28.3.1 Model for the Layer and the Oscillators 480
28.3.2 Brief Description of the Numerical Methodology 481
28.4 Design, Instrumentation and Experiment 482
28.4.1 Design of the Layer 482
28.4.2 Design of the “City” 483
28.4.3 Instrumentation 484
28.4.4 Experiment 485
28.5 Experimental-Analytical-Numerical Comparisons 485
28.5.1 Effects of Soil-City Interactions in Frequency Domain 485
28.5.2 Effects in Time Domain: Longer Coda and Beatings 486
28.5.3 Mode Shapes 487
28.5.4 Depolarization Effect 488
28.6 Conclusion 489
References 490
Chapter-29 492
Centrifuge Modeling of Dynamic Behavior of Box Shaped Underground Structures in Sand 492
29.1 Introduction 492
29.2 Centrifuge Model Tests 494
29.2.1 Centrifuge Test System 494
29.2.1.1 Earthquake Simulator 495
29.2.1.2 Soil Container 495
29.2.1.3 Data Acquisition System 496
29.2.1.4 Accelerometers, Transducers & Strain Gauges
29.2.2 Reduction Scaling & Scaling Effects
29.2.3 Physical Properties of Sand 498
29.2.4 Preparation of Model Ground 498
29.2.5 Design of Culvert Models 499
29.2.6 Instrumentation 500
29.2.7 Testing Program 502
29.3 Results of Centrifuge Tests 502
29.3.1 Maximum Accelerations Along the Soil Profile 502
29.3.2 Culvert Deformations 504
29.4 Summary and Conclusions 505
References 506
Chapter-30 507
Dynamic Response of Shallow Rectangular Tunnels in Sand by Centrifuge Testing 507
30.1 Introduction 507
30.2 Dynamic Centrifuge Tests 508
30.2.1 IFSTTAR Centrifuge Facility 508
30.2.2 Properties of the Soil-Tunnel System 509
30.2.3 Model Preparation 510
30.2.4 Model Layout—Instrumentation 511
30.2.4.1 “Fork” Recording Device 511
30.2.4.2 Diagonal Extensometers 513
30.2.5 Centrifuge Testing Program 513
30.2.6 Experimental Procedure 513
30.3 Interpretation of Experimental Data 514
30.3.1 Free-Field Horizontal Acceleration 515
30.3.2 Experimental Shear Wave Propagation Velocity 516
30.3.3 Tunnel Deformations 517
30.4 Conclusions 520
References 521
Chapter-31 522
Centrifuge Modelling of the Dynamic Behavior of Square Tunnels in Sand 522
31.1 Introduction 522
31.2 Dynamic Centrifuge Tests 523
31.3 Experimental Results 527
31.3.1 Air Hammer Testing 527
31.3.2 Static Response 528
31.3.3 Dynamic Response 528
31.3.3.1 Acceleration 528
31.3.3.2 Earth Pressures 530
31.3.3.3 Bending Moment-Time Histories 531
31.3.3.4 Axial Force-Time Histories 532
31.3.4 Flexible Tunnel Collapse Mechanism 532
31.4 Conclusions 535
References 536
Chapter-32 537
FLIQ: Experimental Verification of Shallow Foundation Performance Under Earthquake-Induced Liquefaction 537
32.1 Introduction 537
32.2 Centrifuge Experiments 538
32.2.1 Experimental Set-Up and Facilities 538
32.2.2 Model Preparation 541
32.2.3 Testing Procedures 544
32.3 Experimental Results 546
32.3.1 Dynamic Loading 546
32.3.2 Post-Shaking Behavior 549
32.4 Conclusions 551
References 552
Chapter-33 555
Centrifuge Modelling of Retaining Walls Embedded in Saturated Sand Under Seismic Actions 555
33.1 Introduction 555
33.2 Experimental Setup and Model Preparation 556
33.2.1 Seismic Actuator and Dynamic Container 557
33.2.2 Materials and Saturation Procedure 558
33.2.3 Instrumentation 559
33.3 Testing Procedures 560
33.4 Main Results 563
33.4.1 Accelerations 564
33.4.2 Pore Pressures 564
33.4.3 Displacements 567
33.4.4 Bending Moments 570
33.5 Conclusions 572
References 573
Chapter-34 575
Experimental and Numerical Investigations of Nonlinearity in Soils Using Advanced Laboratory-Scaled Models (ENINALS Project): From a Site-Test to a Centrifuge Model 575
34.1 Introduction 575
34.2 The Rome Historical Centre Case Study 576
34.3 Seismic Input 577
34.3.1 Natural Reference Input 577
34.3.2 Cyclic Mono-Frequency Input 579
34.3.3 LEMA_DES Multi-Frequency Input 579
34.4 Centrifuge Modelling 581
34.4.1 Experimental Project 581
34.4.2 Experimental Device 581
34.4.3 Experimental Setup 582
34.4.3.1 Preparation of the Sample Boxes: Soil Columns #1 and #2 582
34.4.3.2 Preparation of the Sample Boxes: Soil Columns #3 and #4 583
34.4.4 Seismic Signals Analysis 584
34.4.4.1 Signal Reproduction 584
34.4.4.2 Signal Transmission 585
34.5 Conclusions 587
References 589
Chapter-35 591
Damping Estimation from Seismic Records 591
35.1 Introduction 591
35.2 The Viscous Model 592
35.2.1 Classical-Damping 592
35.2.2 Non-Classical Damping 593
35.3 Damping Identification 594
35.4 Uncertainty in Damping Estimation 595
35.5 Regression Analysis 597
35.5.1 Functional Form 598
35.6 Results 598
35.7 Discussion 601
35.8 Concluding Remarks 602
APPENDIX I—On the accuracy of the classical damping premise 602
Derivation 603
References 605
Chapter-36 606
Development of Wireless Sensors for Shake Table and Full Scale Testing and Health Monitoring of Structures 606
36.1 Introduction 606
36.2 Development of Wireless Sensors at IZIIS 608
36.2.1 MIMRACS Wireless Sensor 608
36.2.1.1 Hardware Components and Technical Specification 608
36.2.1.2 Software 610
36.2.1.3 Device Operation 614
36.2.1.4 Preliminary Verification Tests 616
36.2.2 SAWARS Wireless Sensor 618
36.3 Conclusion 619
References 619
Index 621

Erscheint lt. Verlag 20.4.2015
Reihe/Serie Geotechnical, Geological and Earthquake Engineering
Geotechnical, Geological and Earthquake Engineering
Zusatzinfo XXVII, 614 p. 463 illus.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Naturwissenschaften Physik / Astronomie
Technik Bauwesen
Schlagworte Centrifuge • Earthquake Engineering • Reaction Wall • Research Infrastructure • Seismic design • Seismic testing • Shaking Table
ISBN-10 3-319-10136-6 / 3319101366
ISBN-13 978-3-319-10136-1 / 9783319101361
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 51,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Grundkurs für Ausbildung und Praxis

von Ralf Adams

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
CHF 29,30
Das umfassende Handbuch

von Wolfram Langer

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 48,75