Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Plausible Neural Networks for Biological Modelling -

Plausible Neural Networks for Biological Modelling

H.A. Mastebroek, J.E. Vos (Herausgeber)

Buch | Hardcover
262 Seiten
2001
Springer (Verlag)
978-0-7923-7192-2 (ISBN)
CHF 149,75 inkl. MwSt
The expression 'Neural Networks' refers traditionally to a class of mathematical algorithms that obtain their proper performance while they 'learn' from examples or from experience. As a consequence, they are suitable for performing straightforward and relatively simple tasks like classification, pattern recognition and prediction, as well as more sophisticated tasks like the processing of temporal sequences and the context dependent processing of complex problems. Also, a wide variety of control tasks can be executed by them, and the suggestion is relatively obvious that neural networks perform adequately in such cases because they are thought to mimic the biological nervous system which is also devoted to such tasks. As we shall see, this suggestion is false but does not do any harm as long as it is only the final performance of the algorithm which counts. Neural networks are also used in the modelling of the functioning of (sub­ systems in) the biological nervous system. It will be clear that in such cases it is certainly not irrelevant how similar their algorithm is to what is precisely going on in the nervous system. Standard artificial neural networks are constructed from 'units' (roughly similar to neurons) that transmit their 'activity' (similar to membrane potentials or to mean firing rates) to other units via 'weight factors' (similar to synaptic coupling efficacies).

I Fundamentals.- 1 Biological Evidence for Synapse Modification Relevant for Neural Network Modelling.- 2 What is Different with Spiking Neurons?.- 3 Recurrent Neural Networks: Properties and Models.- 4 A Derivation of the Learning Rules for Dynamic Recurrent Neural Networks.- II Applications to Biology.- 5 Simulation of the Human Oculomotor Integrator Using a Dynamic Recurrent Neural Network.- 6 Pattern Segmentation in an Associative Network of Spiking Neurons.- 7 Cortical Models for Movement Control.- 8 Implications of Activity Dependent Processes in Spinal Cord Circuits for the Development of Motor Control; a Neural Network Model.- 9 Cortical Maps as Topology—Representing Neural Networks Applied to Motor Control: Articulatory Speech Synthesis.- 10 Line and Edge Detection by Curvature—Adaptive Neural Networks.- 11 Path Planning and Obstacle Avoidance Using a Recurrent Neural Network.

Erscheint lt. Verlag 30.9.2001
Reihe/Serie Mathematical Modelling: Theory and Applications ; 13
Zusatzinfo IX, 262 p.
Verlagsort Dordrecht
Sprache englisch
Maße 170 x 244 mm
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik
Naturwissenschaften Biologie Humanbiologie
Naturwissenschaften Biologie Zoologie
ISBN-10 0-7923-7192-5 / 0792371925
ISBN-13 978-0-7923-7192-2 / 9780792371922
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Modelle für 3D-Druck und CNC entwerfen

von Lydia Sloan Cline

Buch | Softcover (2022)
dpunkt (Verlag)
CHF 48,85
Einstieg und Praxis

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2023)
Markt + Technik (Verlag)
CHF 27,90
alles zum Drucken, Scannen, Modellieren

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2024)
Markt + Technik Verlag
CHF 34,90