D. D. Ganji is a Professor of Mechanical Engineering and the Director of the Graduate Program at Babol Noshirvani University of Technology in Iran, as well as a consultant in nonlinear dynamics and the Dean of the National Elite Foundation of Iran. He has a Ph.D. in Mechanical Engineering from Tarbiat Modarres University. He is the Editor-in-Chief of International Journal of Nonlinear Dynamic and Engineering Science, and Editor of International Journal of Nonlinear Sciences and Numerical Simulation and International Journal of Differential Equations.
With Application of Nonlinear Systems in Nanomechanics and Nanofluids the reader gains a deep and practice-oriented understanding of nonlinear systems within areas of nanotechnology application as well as the necessary knowledge enabling the handling of such systems. The book helps readers understand relevant methods and techniques for solving nonlinear problems, and is an invaluable reference for researchers, professionals and PhD students interested in research areas and industries where nanofluidics and dynamic nano-mechanical systems are studied or applied. The book is useful in areas such as nanoelectronics and bionanotechnology, and the underlying framework can also be applied to other problems in various fields of engineering and applied sciences. - Provides comprehensive coverage of nano-dynamical systems and their specialized processes and applications in the context of nonlinear differential equations and analytical methods- Enables researchers and engineers to better model, interpret and control nanofluidics and other nano-dynamical systems and their application processes- Explains nano-dynamical systems by means of describing 'real-life' application case studies
Semi Nonlinear Analysis in Carbon Nanotube
Abstract
In this chapter, at first, we have presented an introduction to carbon nanotubes (CNTs). Then, the more important applications of CNTs are introduced in separate sections and nonlinear dynamical systems arose from those have been solved by semi important and strongly analytical and numerical methods. In each section, we have discussed the affecting important parameters on the physics of the problems.
In the first section of this chapter, the deformation of an individual single-walled carbon nanotube (SWCNT) over a bundle of nanotubes has been studied using the generalized differential quadrature method. In the second section, the continuum mechanics method and a bending model are applied to obtain the resonant frequency of the fixed-free SWCNT where the mass is rigidly attached to the tip. The validity and the accuracy of these formulas are examined with other sensor equations in the literatures. In the third section, based on continuum mechanics and an elastic beam model, a nonlinear free vibration analysis of embedded SWCNT considering the effects of rippling deformation and midplane stretching on nonlinear frequency is investigated and more, in fourth section, continuum mechanics and an elastic beam model have been introduced in the nonlinear force vibrational analysis of an embedded, curved, SWCNT and finally, in fifth section, based on the rippling deformation, a nonlinear beam model is developed for transverse vibration of SWCNTs on elastic foundation. The nonlinear natural frequency has been calculated for typical boundary conditions using the perturbation method of multiscales.
Keywords
Nanotube
Carbon nanotube
Tubular carbon structures
Curved carbon nanotube
Single-walled carbon nanotube
Nanobeam
Nonlinear dynamic
Nonlinear vibration
Generalized differential quadrature method
Continuum mechanics method
Variational iteration method
Energy balance method
Galerkin method
Runge-Kutta method
Euler-Bernoulli theory
Resonant frequency
Cantilevered boundary conditions
Sensor equations
Midplane stretching
Elastic foundation
Pasternak foundation
Winkler foundation
Nonlinear bending deformation
Rippling deformation
Chapter Contents
2.1 Introduction of Carbon Nanotube 14
2.1.1 Single-Wall Nanotubes 15
2.1.2 Multiwall Nanotubes 15
2.1.3 Double-Wall Nanotubes 15
2.2 Single SWCNT Over a Bundle of Nanotube 17
2.2.1 Introduction 17
2.2.2 Formulations 18
2.2.2.1 Schematic of Problem 18
2.2.2.2 Modeling the Individual SWCNT as a Beam 19
2.2.2.3 Differential Quadrature and Solution Procedure 20
2.2.2.4 Finite Element Method 22
2.2.3 Results 24
2.2.3.1 Mesh Point Number Effect 24
2.2.3.2 Length Effect 25
2.2.3.3 Validation of GDQ Approach 25
2.2.4 Conclusion 27
2.3 Cantilevered SWCNT as a Nanomechanical Sensor 28
2.3.1 Introduction 30
2.3.2 Analysis of the Problem 31
2.3.2.1 Basic Bending Vibration and Resonant Frequencies of SWCNT with Attached Mass 31
2.3.2.2 Resonant Frequency of Cantilevered SWCNT Where the Mass is Rigidly Attached to the Tip 31
2.3.3 Numerical Results 33
2.3.3.1 Vibration Mode Analysis 33
2.3.4 Mass Sensor Mode Comparison 33
2.3.5 Conclusion 35
2.4 Nonlinear Vibration for Embedded CNT 36
2.4.1 Introduction 36
2.4.2 Basic Equations 37
2.4.3 Solution Methodology 40
2.4.4 Numerical Results and Discussion 41
2.4.5 Conclusion 45
2.5 Curved SWCNT 45
2.5.1 Introduction 45
2.5.2 Vibrational Model 46
2.5.3 Solution Methodology 48
2.5.4 Numerical Results and Discussion 49
2.5.5 Conclusion 53
2.6 CNT with Rippling Deformations 54
2.6.1 Introduction 54
2.6.2 Vibration Model 55
2.6.2.1 Boundary Conditions 55
2.6.2.2 Nonlinear Vibration Model 55
2.6.2.3 Nonlinear Analysis 57
2.6.3 Results and Discussion 62
2.6.4 Conclusion 67
References 68
2.1 Introduction of Carbon Nanotube
Since their initial discovery by Iijima (1991), carbon nanotubes (CNTs) have come under ever-increasing scientific scrutiny.
A CNT is a tube-shaped material, made of carbon, having a diameter measuring on the nanometer scale. A nanometer is one-billionth of a meter, or about one ten-thousandth of the thickness of a human hair. The graphite layer appears somewhat like a rolled-up chicken wire with a continuous unbroken hexagonal mesh and carbon molecules at the apexes of the hexagons.
CNTs have many structures, differing in length, thickness, and in the type of helicity and number of layers. CNTs possess excellent mechanical properties, such as extremely high strength, stiffness, and resilience. These points, together with other distinctive physical properties, result in many prospective applications, such as strong, light, and high toughness fibers for nanocomposite structures, parts of nanodevices, hydrogen storage (high frequency) micromechanical oscillators, etc. (see www.nanocyl.com/en/CNT-Expertise-Centre/Carbon-Nanotubes).
In fact, CNTs are unique nanostructured materials. The extraordinary mechanical and physical properties in addition to the large aspect ratio and low density have made CNTs ideal components of nanodevices.
Although they are formed from essentially the same graphite sheet, their electrical characteristics differ depending on these variations, acting either as metals or as semiconductors.
As a group, CNTs typically have diameters ranging from < 1 up to 50 nm. Their lengths are typically several microns, but recent advancements have made the nanotubes much longer, and measured in centimeters.
CNTs can be categorized by their structures:
1. Single-wall nanotubes (SWNT)
2. Multiwall nanotubes (MWNT)
3. Double-wall nanotubes (DWNT)
2.1.1 Single-Wall Nanotubes
SWNT are tubes of graphite that are normally capped at the ends. They have a single cylindrical wall. The structure of a SWNT can be visualized as a layer of graphite, a single atom thick, called graphene, which is rolled into a seamless cylinder.
Most SWNT typically have a diameter of close to 1 nm. The tube length, however, can be many thousands of times longer.
SWNT are more pliable yet harder to make than MWNT. They can be twisted, flattened, and bent into small circles or around sharp bends without breaking.
SWNT have unique electronic and mechanical properties which can be used in numerous applications, such as field-emission displays, nanocomposite materials,...
Erscheint lt. Verlag | 19.3.2015 |
---|---|
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Strömungsmechanik |
Technik ► Bauwesen | |
Technik ► Elektrotechnik / Energietechnik | |
ISBN-10 | 0-323-35381-9 / 0323353819 |
ISBN-13 | 978-0-323-35381-6 / 9780323353816 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
![PDF](/img/icon_pdf_big.jpg)
Größe: 26,7 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
![EPUB](/img/icon_epub_big.jpg)
Größe: 21,0 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich