Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Surface Science Tools for Nanomaterials Characterization (eBook)

Challa S.S.R. Kumar (Herausgeber)

eBook Download: PDF
2015 | 2015
X, 652 Seiten
Springer Berlin (Verlag)
978-3-662-44551-8 (ISBN)

Lese- und Medienproben

Surface Science Tools for Nanomaterials Characterization -
Systemvoraussetzungen
309,23 inkl. MwSt
(CHF 299,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Fourth volume of a 40volume series on nano science and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about Surface Science Tools for Nanomaterials Characterization. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.

Dr. Challa S. S. R. Kumar is Director of Nanofabrication and Nanomaterials at the Center for Advanced Microstructures and Devices at Louisiana State University in Baton Rouge, USA. He is also President and CEO of Magnano Technologies and has some years of industrial R&D experience working for Imperial Chemical Industries and United Breweries. His main research interests are the development of novel synthetic methods, including those based on microfluidic reactors, for the synthesis of multifunctional nanomaterials. Dr. Kumar is the winner of the 2006 Nano 50 Technology Award for his work in magnetic-based nanoparticles for cancer imaging and treatment. He is the editor and author of several books and journal articles and a former editor of the Journal of Biomedical Nanotechnology.

Dr. Challa S. S. R. Kumar is Director of Nanofabrication and Nanomaterials at the Center for Advanced Microstructures and Devices at Louisiana State University in Baton Rouge, USA. He is also President and CEO of Magnano Technologies and has some years of industrial R&D experience working for Imperial Chemical Industries and United Breweries. His main research interests are the development of novel synthetic methods, including those based on microfluidic reactors, for the synthesis of multifunctional nanomaterials. Dr. Kumar is the winner of the 2006 Nano 50 Technology Award for his work in magnetic-based nanoparticles for cancer imaging and treatment. He is the editor and author of several books and journal articles and a former editor of the Journal of Biomedical Nanotechnology.

Contents 6
Contributors 8
1 Scanning Electrochemical Potential Microscopy (SECPM) and Electrochemical STM (EC-STM) 12
1 Definition of the Topic 13
2 Overview 13
3 Introduction 14
4 Experimental and Instrumental Methodology 15
4.1 STM 15
4.2 EC-STM 17
4.3 SECPM 18
4.4 Local Activity Measurements 19
4.5 Deconvolution of Images 20
4.5.1 EC-STM: Influence of Electrolyte and Electron Transfer Modes Through Adsorbed Molecules 20
4.5.2 SECPM: Theory of Electrochemical Double Layer and Convolution 23
5 Key Research Findings: Electrocatalysis on Metal Single-Crystal Surfaces 25
5.1 Sample Preparation 27
5.1.1 Epitaxial Layer Growth 27
5.1.2 Nanoparticle Deposition 28
5.2 Platinum Substrates 29
5.2.1 Palladium on Platinum 29
5.2.2 Copper on Platinum 30
5.2.3 Ruthenium on Platinum 30
5.2.4 Step Edges on Platinum Surfaces 35
5.3 Gold Substrates 38
5.3.1 Silver and Lead Composite on Gold 38
5.3.2 Ruthenium on Gold 39
5.3.3 Palladium on Gold 39
5.3.4 Platinum on Gold 42
5.4 SPM on Single-Crystal Surfaces 44
5.4.1 Au(111) 46
5.4.2 Ru(0001) 46
5.4.3 Rh(111), Ir(111), and Ir(100) 47
6 Key Research Findings: Biomolecules 48
6.1 Introduction 48
6.1.1 Introducing the Investigated Biomolecules 49
6.1.2 Anchoring Biomolecules on a Substrate 53
6.2 Unraveling the Electron Transfer Mode Through Adsorbed Biomolecules in EC-STM 54
6.3 Shape and Size of Biomolecules 59
6.3.1 Influences on the Shape of Biomolecules when Measured with EC-STM 60
6.3.2 Resolving Single Biomolecules with EC-STM and SECPM 64
6.4 Applications, Designing Devices 69
7 Conclusions and Future Perspective 71
References 72
2 Recovering Time-Resolved Imaging Forces in Solution by Scanning Probe Acceleration Microscopy: Theory and Application 79
1 Definition of Topic 13
2 Overview 13
3 Introduction 14
4 Experimental Methodology 15
4.1 Numerical Model of the Entire Imaging Process of TMAFM in Solution 15
4.2 Basic Principles Underlying SPAM 17
5 Key Research Findings 18
5.1 Features of the Time-Resolved Tip/Sample Force are Independent of Surface Topography 19
5.2 Features of the Time-Resolved Tip/Sample Force Provide Insight into Surface Mechanical Properties 20
5.3 The Impact of Imaging Parameters on Time-Resolved Tip/Sample Force 20
5.4 Applications of SPAM to Real Systems 23
6 Conclusions and Future Perspective 25
References 72
3 Scanning Probe Microscopy for Nanolithography 100
1 Definition of the Topic 13
2 Overview 13
3 Introduction 14
4 Experimental and Instrumental Methodology 15
5 Key Research Findings 15
5.1 Scanning Probe Lithography-I 17
5.1.1 Dip-Pen Nanolithography (DPN) 18
5.1.2 Scanning Probe Block Copolymer Lithography (SPBCL) 19
5.1.3 Polymer-Pen Lithography (PPL) 20
5.1.4 Scanning Thermal Lithography (SThL) 20
5.1.5 Scanning Thermal Twisted Microscopy (STTM) 23
5.1.6 Scanning Electrochemical Microscopy (SECM) 25
5.1.7 Scanning Ion Conductance Microscopy (SICM) 27
5.2 Scanning Probe Lithography-II 27
5.2.1 Local-Oxidation Lithography 28
5.2.2 Tip-Induced Local Anodic Oxidation (LAO) 29
5.2.3 Ferroelectric Lithography (FL) 29
5.2.4 Kelvin Probe Lithography (KPL) 30
5.2.5 Indentation Lithography (IndL) 30
5.3 Scanning Probe Lithography (SPL)-III 35
5.3.1 Optical Force Stamping Lithography (OFSL) 38
5.3.2 Femtosecond Pump-Probe Microscope (FPM) 38
5.3.3 Multiphoton Lithography (MPL) 39
5.3.4 Scanning Near-Field Optical Lithography (SNOL) 39
5.3.5 Photocatalytic Lithography 42
5.4 Equivalent Direct-Write Approaches 44
5.4.1 Gas-Phase Electron Beam-Induced Deposition (GEBID) 46
5.4.2 Liquid-Phase Electron Beam-Induced Deposition (LPEBID) 46
5.4.3 Focused Electron Beam-Induced Processing (FEBIP) 47
5.4.4 Laser-Assisted Electron Beam-Induced Deposition (LAEBID) 48
6 Conclusions and Future Perspective 48
References 72
4 Kelvin Probe Force Microscopy in Nanoscience and Nanotechnology 125
1 Definition of the Topic 13
2 Overview 13
3 Introduction 14
4 Physical Background and Theory for Kelvin Probe Method 15
4.1 Fundamentals 15
4.2 Electric Force and Electric Force Gradient 17
4.3 AM-KPFM 18
4.4 FM-KPFM 19
4.5 KPFM Without Potential Feedback 20
5 KPFM Measurement 20
5.1 Lock-In Settings for KPFM Measurement 23
5.2 KPFM Resolution 25
5.3 KPFM Sensitivity 27
5.4 KPFM Repeatability 27
6 Applications of KPFM in Nanoscale Characterization 28
6.1 Surface Charge 29
6.2 Work Function and Doping Level 29
6.2.1 Metallic Nanostructures 30
6.2.2 Semiconducting Nanostructures 30
6.2.3 Carbon Nanostructures 35
6.3 Charge Transfer 38
6.4 Field Effect Transistors 38
6.5 Atomic Resolution KPFM 39
References 72
5 Field Ion Microscopy for the Characterization of Scanning Probes 167
1 Definition of the Topic 13
2 Overview 13
3 Field Ion Microscopy for the Characterization of Scanning Probes 14
3.1 Introduction 15
3.1.1 Field Ion Microscopy (FIM) 15
3.1.2 Scanning Probe Microscopy 17
3.1.3 Combined STM/AFM/FIM 18
3.2 Experimental and Instrumental Methodology 19
3.2.1 Operating Principle of the FIM 20
3.2.2 Spatial Resolution of the FIM 20
3.2.3 Tip Etching and Preparation 23
3.2.4 Radius Determination by Ring Counting 25
3.2.5 Advanced Tip Preparation: Etching and Faceting 27
3.2.6 Tip Integrity: ``Force Field´´ Protocol and Rest Gases 27
3.3 Key Research Findings 28
3.3.1 Review of Combined FIM/SPM Experiments 29
3.3.2 Atomically Defined Tips in STM 29
3.3.3 Long-Range Force Interactions in Noncontact AFM 30
3.3.4 FIM Tips for Atomic-Scale Nanoindentation 30
3.4 Conclusions and Future Perspective 35
References 72
6 Scanning Conductive Torsion Mode Microscopy 207
1 Definition of the Topic 13
2 Overview 13
3 Introduction 14
3.1 Motivations 15
3.2 Technical Challenges for Nondestructive Conductive AFM 15
4 Experimental and Instrumental Methodology 17
4.1 How Does SCTMM Work? 18
4.2 Experimental Demonstration of SCTMM 19
4.3 How Does the Tip-Sample Interaction Relate to the Current Measurement in SCTMM? 20
4.4 Is SCTMM Destructive or Nondestructive? 20
4.4.1 Reduced Electrical Conductivity After SCTMM Measurements 23
4.4.2 Changes of Surface Potential After SCTMM Measurements 25
5 Key Research Findings 27
5.1 Understanding Structure-Properties Relationship by SCTMM 27
5.1.1 SCTMM Analysis on Individual AuNPs 28
5.1.2 SCTMM Analysis of Au Clusters 29
5.1.3 Understanding the Nanoscopic Structure of Conjugated Polymer Blends 29
5.2 Mapping of Local Conductivity Variations on Fragile Nanopillar Arrays 30
5.3 Monitoring Electropolymerization of Conjugated Polymers 30
5.4 Understanding Molecular Orientation of Self-Assembly Structures 35
6 Conclusions and Future Perspective 38
6.1 Frequency Modulation SCTMM 38
6.2 Maximum Force-Modulated Current-Sensing Techniques 39
References 72
7 Field Ion and Field Desorption Microscopy: Principles and Applications 234
1 Definition of the Topic 13
2 Overview 14
3 Introduction 15
4 Experimental and Instrumental Methodology 15
4.1 Field Ion Microscopy 17
4.2 Imaging with Field-Desorbed Ions 18
4.3 Probe-Hole Analysis of Emitted Ions 19
4.4 Field Ion Appearance Energy Spectroscopy 20
5 Key Research Findings and Applications 20
5.1 FIM Applications and Findings 23
5.1.1 FIM in Surface Chemistry 25
5.1.2 Fluctuation-Induced Effects 27
5.2 Field Desorption Microscopy 27
5.3 Probe-Hole Ion Analysis and Field Ion Appearance Energy Spectroscopy 28
5.4 Carbon Nanotubes 29
6 Summary and Future Perspective 29
References 72
8 Noncontact Atomic Force Microscopy for Atomic-Scale Characterization of Material Surfaces 280
1 Definition of the Topic 13
2 Overview 13
3 Introduction 14
4 Experimental and Instrumental Methodology 15
5 Key Research Findings 15
5.1 Atomic-Resolution Imaging 17
5.1.1 Semiconductor Surfaces 18
5.1.2 Metal Oxide Surfaces 19
5.1.3 Ionic Crystal Surfaces 20
5.1.4 Other Material Surfaces and Adsorbed Molecules 20
5.2 Atomic-Resolution Force Spectroscopy 23
5.2.1 Pioneering Studies in Atomic-Resolution Force Spectroscopy 25
5.2.2 Three-Dimensional Force Spectroscopy with Atomic Resolution 27
5.2.3 Combined Three-Dimensional Force and Tunneling Current Spectroscopy with Atomic Resolution 27
6 Conclusions and Outlook 28
References 72
9 Applications of Synchrotron-Based X-Ray Photoelectron Spectroscopy in the Characterization of Nanomaterials 324
1 Definition of the Topic 13
2 Overview 13
3 Introduction 14
4 Experimental and Instrumental Methodology 15
4.1 The Fundamentals of XPS 15
4.1.1 The Physical Principles 17
4.1.2 The Contribution of Initial and Final State Effects to the Photoelectron Energy 18
4.1.3 Instrumentation Aspects 19
4.1.4 Basic Characteristics of an XPS Spectrum 20
4.1.5 Analysis Depth (or Surface Sensitivity) 20
4.1.6 Quantitative XPS Analysis 23
Approach for Planar Model 25
Using the Geometry Correction Factor for Spherical Nanoparticles 27
General Equation for the Core-Shell Nanoparticles 27
4.2 Advantages in X-Ray Photoelectron Spectroscopy by Synchrotron Radiation 28
4.2.1 Intense and Bright Radiation 29
4.2.2 Energy Tunability 29
4.2.3 High Energy Resolution 30
4.2.4 Characteristic Examples 30
High Resolution and Brilliance to Distinguish Particle Size-Dependent Core-Level Shifts in Photoelectron Spectroscopy 35
Energy Tunability for Nondestructive Depth Profiling 38
Resonant Photoemission Spectroscopy 38
5 Key Research Findings 39
5.1 Scanning Photoelectron Microscopy: XPS with High Lateral Resolution 39
5.1.1 Case Study 1: Monitor the Characteristics of Membrane/Pt NP Interfaces Under Polarization with SPEM 42
5.2 Ambient Pressure X-Ray Photoelectron Spectroscopy: XPS Under Pressure 44
5.2.1 Case Study 2: The Oxidation State and the Morphology of PtCo Bimetallic Nanoparticles Under Reducing (H2) and Oxidizing (O2) Environments 46
5.2.2 Case Study 3: Studying the Redox Behavior of a Realistic PtRuCo Electrocatalyst with APXPS 46
5.3 Hard X-Ray Photoemission Spectroscopy: XPS in the Bulk 47
5.3.1 Case Study 4: Analysis of Li-Ion Batteries by HXPES 48
6 Conclusions and Future Perspective 48
Acknowledgments 370
References 72
10 Exploration into the Valence Band Structures of Organic Semiconductors by Angle-Resolved Photoelectron Spectroscopy 374
1 Definition of the Topic 13
2 Overview 13
3 Introduction 14
4 Experimental and Instrumental Methodology 15
4.1 Essential Principles of the Photoelectron Spectroscopy (PES) 15
4.2 History of Problems with PES on Organic Solids 17
4.3 Solution I: Photoelectron Yield Spectroscopy (PYS) 18
4.4 Solution II: PES Assisted by Photoconduction 19
5 Key Research Findings 20
5.1 Valence Bands of Crystalline Thin Films of an Organic Semiconductor: Pentacene 20
5.2 Rubrene Single Crystal: Demonstration of the Band Dispersion on an ``Insulating´´ Material 23
5.3 Novel Nano-organic Interaction: pi-Conjugated Molecules on Quantum Wells 25
6 Conclusions and Future Perspective 27
7 Acknowledgments 27
References 72
11 Band Bending at Metal-Semiconductor Interfaces, Ferroelectric Surfaces and Metal-Ferroelectric Interfaces Investigated by Photoelectron Spectroscopy 412
1 Definition of the Topic 13
2 Overview 13
3 Introduction 14
3.1 Band Bending in Solids: Metal-Semiconductors and Ferroelectric Surfaces 15
4 Experimental and Instrumental Methodology 15
4.1 X-Ray Photoelectron Spectroscopy Method: Basic Aspects and Data Analysis 17
4.2 Preparation Methods 18
5 Key Research Findings 19
5.1 X-Ray Photoelectron Spectroscopy in Analysis of Band Bendings: A Short Review 20
5.1.1 ``Standard´´ Systems 20
5.1.2 Ferroelectric Systems 23
5.2 Theoretical Aspects 25
5.2.1 Metal-Semiconductor Schottky Contacts 27
5.2.2 The Case of Free Ferroelectric Surfaces 27
5.2.3 Metal Contacts on Ferroelectrics 28
5.3 Experimental Examples 29
5.3.1 Standard Cases of Schottky Barriers 29
Cu/Ge(001) 30
Au/PZT(001), Contaminated, Without Thermal Treatment: Standard Schottky Mechanism in Case of a Ferroelectric Surface 30
5.3.2 Free Ferroelectrics: PZT(001), Sample History and Contamination 35
5.3.3 Continuous Metal Layers Deposited on Ferroelectrics 38
5.3.4 Metal Layers Deposited on Ferroelectrics Subject to Thermal Treatments 38
6 Conclusions and Future Perspective 39
Acknowledgments 370
References 72
12 Higher Resolution Scanning Probe Methods for Magnetic Imaging 469
1 Definition of the Topic 13
2 Overview 13
3 Introduction 14
4 Experimental and Instrumental Methodology 15
5 Key Research Findings 15
5.1 Applications of Magnetic Force Microscopy 17
5.1.1 Magnetic Recording 18
Longitudinal Magnetic Recording Medium 19
Perpendicular Media 20
Patterned Media 20
5.1.2 Physics of Magnetic Materials 23
5.1.3 Geological Applications 25
5.1.4 Biological Applications 27
5.2 Advanced Techniques 27
5.2.1 Focused Ion Beam Etching 28
5.2.2 Carbon Nanotubes 29
5.2.3 Fine Tips by Other Methods 29
5.2.4 MFM Tips with Antiferromagnetically Coupled (AFC) Magnetic Layers 30
5.2.5 MFM Tips with a Perpendicular Magnetic Anisotropy 30
5.2.6 MFM Imaging in Vacuum 35
6 Conclusions and Future Perspectives 38
References 72
13 Imaging and Characterization of Magnetic Micro- and Nanostructures Using Force Microscopy 494
1 Introduction and Definition of the Topic 13
2 General Experimental Methodology: Principles of Magnetic AFMs 13
2.1 Basic Setup 14
2.2 AFM Cantilevers: Micromechanical Resonators Acting as Force Sensors 15
2.3 Detection of Cantilever Oscillation 15
3 Specific Experimental Methodology: Implementations of Magnetic AFM Approaches 17
3.1 Magnetic Force Microscopy (MFM) 18
3.1.1 General Remarks 19
3.1.2 Origin of Magnetic Force 20
3.1.3 Instrumentation 20
3.1.4 Measurement Procedure 23
3.1.5 Image Formation 25
3.1.6 Applications 27
3.2 Magnetic Resonance Force Microscopy (MRFM) 27
3.2.1 General Remarks 28
3.2.2 Origin of Magnetic Force 29
3.2.3 Instrumentation 29
3.2.4 Measurement Procedure 30
3.2.5 Applications 30
3.3 Magnetic Exchange Force Microscopy (MExFM) 35
3.3.1 General Remarks 38
3.3.2 Force Generation 38
3.3.3 Instrumentation 39
3.3.4 Measurement Procedure 39
3.3.5 Applications 42
4 Conclusions and Outlook 44
References 72
14 Combining Micromanipulation, Kerr Magnetometry and Magnetic Force Microscopy for Characterization of Three-Dimensional Magnetic Nanostructures 535
1 Definition of the Topic 13
2 Overview 13
3 Introduction 14
4 Experimental and Instrumental Methodology 15
4.1 Experimental Techniques 15
4.2 Combining Micromanipulation, Kerr Magnetometry, and Magnetic Force Microscopy to Characterize Magnetic Nanostructures 17
5 Key Research Findings 18
5.1 Patterning of Three-Dimensional Magnetic Nanostructures Using Focused Electron Beam 19
5.2 Direct Magneto-optical Kerr Effect Measurements on Suspended Nanostructures 20
5.2.1 Magnetic Switching of Tilted Nanowires 20
5.2.2 Drawbacks: Heating, Mixed Signals, and Sources of Noise 23
5.3 The ``Felling Method´´ 25
5.3.1 Micromanipulation of Suspended Nanostructures 27
5.3.2 MOKE on Felled Nanostructures 27
5.3.3 Atomic Force Microscopy on Felled Nanostructures 28
5.3.4 Magnetic Force Microscopy on Felled Nanostructures 29
6 Conclusions and Future Perspective 29
Acknowledgments 370
References 72
15 High Resolution STM Imaging 564
1 Definition of the Topic 13
2 Overview 13
3 Introduction 14
4 Experimental and Instrumental Methodology 15
4.1 Basic Principle and Experimental Realization of STM 15
4.2 Preparation of Tips and Samples for High-Resolution STM Experiments 17
5 Key Research Findings 18
5.1 Atomically Resolved STM Imaging 19
5.1.1 Semiconductors 20
5.1.2 Metals 20
5.1.3 Insulators 23
5.1.4 Molecules 25
5.2 Role of the Tip Electronic Structure 27
5.2.1 Spatial Resolution with m = 0 Tip States 27
5.2.2 STM Imaging with m 0 Tip States 28
5.2.3 Electronic Structure of Realistic Tips at Small Tunneling Gaps 29
5.3 Distance Dependence of STM Images 29
5.3.1 Enhancement of Lateral Resolution with Decreasing Tunneling Gap 30
5.3.2 Atomic Relaxations and Corrugation Enhancement on Metal Surfaces 30
5.3.3 Contrast Inversion in Gap Resistance-Dependent STM Experiments 35
5.3.4 Mapping the Surface Wave Functions in Distance-Dependent STM Experiments 38
5.3.5 Interaction-Induced Reduction in Tunneling Current Channels 38
5.4 Chemical Contrast in STM Experiments 39
5.4.1 Chemical Contrast on Semiconductors: GaAs(110) and GaTe() 39
5.4.2 Chemical Contrast on Binary Metal Alloys: PtNi, PtCo, PtRh 42
5.4.3 Chemical Contrast on Metal Oxides 44
5.5 Electron Orbital Resolution in STM Experiments 46
5.5.1 Atomic Orbitals of the Si-terminated Tip Resolved Using the pz-Orbitals of the Si(111)7 x 7 Surface Atoms 46
5.5.2 Sm 4fz Electron Orbital of a Co6Fe3Sm Tip Probed by the pz-Orbitals of the Silicon Atoms 47
5.5.3 dyz Electron Orbital of an MnNi Tip Resolved in STM Experiments on the Cu(014)-O Surface 48
5.5.4 dxz-Orbitals of the Copper and Cobalt Atoms Resolved Using Clean and Iron-Covered Tungsten Tips 48
5.5.5 Distance Dependence of the W[001] Tip Atom d-orbital Contribution in STM Experiments on HOPG(0001) 49
5.5.6 STM Imaging of HOPG(0001) Using a [111]-Oriented Single Crystal Diamond Tip 53
5.5.7 STM Imaging of the Random Carbon Bond Length Distortions in Quasi-freestanding Graphene Synthesized on SiC(001) 54
5.6 Conclusions and Future Perspective 59
Acknowledgments 370
References 72
16 Numerical and Finite Element Simulations of Nanotips for FIM/FEM 623
1 Definition of the Topic 13
2 Overview 13
3 Introduction 14
4 FEM and FIM Setup 15
5 Key Research Findings 15
5.1 Spherical Model of Nanotips 17
5.1.1 Analytical Modeling 18
5.1.2 Finite Element Simulation Modeling 19
6 Results 20
6.1 Hyperboloid Model of Nanotips 20
6.1.1 Finite Element Simulations with Hyperbolic Coordinates 23
7 Conclusion 25
References 72
Index 646

Erscheint lt. Verlag 10.3.2015
Zusatzinfo X, 652 p. 293 illus., 221 illus. in color.
Verlagsort Berlin
Sprache englisch
Themenwelt Naturwissenschaften Chemie Physikalische Chemie
Technik
ISBN-10 3-662-44551-4 / 3662445514
ISBN-13 978-3-662-44551-8 / 9783662445518
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 28,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quantenmechanik • Spektroskopie • Statistische Thermodynamik

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
De Gruyter (Verlag)
CHF 53,65
Thermodynamik • Kinetik • Elektrochemie

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
De Gruyter (Verlag)
CHF 58,55

von Peter W. Atkins; Julio de Paula; James J. Keeler

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
CHF 75,20