Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Multiobjective Genetic Algorithms for Clustering - Ujjwal Maulik, Sanghamitra Bandyopadhyay, Anirban Mukhopadhyay

Multiobjective Genetic Algorithms for Clustering

Applications in Data Mining and Bioinformatics
Buch | Softcover
XVI, 281 Seiten
2014 | 2011
Springer Berlin (Verlag)
978-3-642-43963-6 (ISBN)
CHF 74,85 inkl. MwSt
This book covers clustering using multiobjective genetic algorithms, with extensive real-life application in data mining and bioinformatics. The authors offer instructions for relevant techniques, and demonstrate real-world applications in several disciplines.
This is the first book primarily dedicated to clustering using multiobjective genetic algorithms with extensive real-life applications in data mining and bioinformatics. The authors first offer detailed introductions to the relevant techniques genetic algorithms, multiobjective optimization, soft computing, data mining and bioinformatics. They then demonstrate systematic applications of these techniques to real-world problems in the areas of data mining, bioinformatics and geoscience. The authors offer detailed theoretical and statistical notes, guides to future research, and chapter summaries.

The book can be used as a textbook and as a reference book by graduate students and academic and industrial researchers in the areas of soft computing, data mining, bioinformatics and geoscience.

Prof. Sanghamitra Bandyopadhyay has many years of experience in the development of soft computing techniques. Among other awards and positions, she has received senior researcher Humboldt Fellowships, and she is a regular visitor to the DKFZ (German Cancer Research Centre) and to European and North American universities, collaborating in multidisciplinary teams on applications in the areas of computational biology and bioinformatics. Among other awards Prof. Bandyopadhyay received the prestigious Shanti Swarup Bhatnagar Prize in Engineering Sciences in 2010, she is a Fellow of the National Academy of Sciences of India and she is a Fellow of the Indian National Academy of Engineering. Dr. Sriparna Saha is an assistant professor in the Indian Institute of Technology Patna. Among her positions and awards, she was a postdoctoral researcher in Trento and in Heidelberg, and she received the Google India Women in Engineering Award in 2008. Her research interests include multiobjective optimization, evolutionary computation, clustering, and pattern recognition.

Introduction.- Genetic Algorithms and Multiobjective Optimization.- Data Mining Fundamentals.- Computational Biology and Bioinformatics.- Multiobjective Genetic-Algorithm-Based Fuzzy Clustering.- Combining Pareto-Optimal Clusters Using Supervised Learning.- Two-Stage Fuzzy Clustering.- Clustering Categorical Data in a Multiobjective Framework.- Unsupervised Cancer Classification and Gene Marker Identification.- Multiobjective Biclustering in Microarray Gene Expression Data.- References.- Index.

Erscheint lt. Verlag 23.11.2014
Zusatzinfo XVI, 281 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 462 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Informatik Weitere Themen Bioinformatik
Naturwissenschaften Biologie
Schlagworte Bioinformatics • Clustering • Computational Biology • Data Mining • Genetic algorithms • geoscience • Multiobjective Optimization • pattern recognition • Remote Sensing • Soft Computing • supervised learning
ISBN-10 3-642-43963-2 / 3642439632
ISBN-13 978-3-642-43963-6 / 9783642439636
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Daten importieren, bereinigen, umformen und visualisieren

von Hadley Wickham; Mine Çetinkaya-Rundel …

Buch | Softcover (2024)
O'Reilly (Verlag)
CHF 76,85
eine Einführung mit Python, Scikit-Learn und TensorFlow

von Oliver Zeigermann; Chi Nhan Nguyen

Buch | Softcover (2024)
O'Reilly (Verlag)
CHF 27,85
Das umfassende Handbuch

von Wolfram Langer

Buch | Hardcover (2023)
Rheinwerk (Verlag)
CHF 69,85