Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Marine Carbohydrates: Fundamentals and Applications, Part A

Marine Carbohydrates: Fundamentals and Applications, Part A (eBook)

eBook Download: PDF | EPUB
2014 | 1. Auflage
246 Seiten
Elsevier Science (Verlag)
978-0-12-800366-4 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
137,00 inkl. MwSt
(CHF 133,85)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Marine Carbohydrates: Fundamentals and Applications brings together the diverse range of research in this important area which leads to clinical and industrialized products. The volume, number 72, focuses on marine carbohydrates in isolation, biological, and biomedical applications and provides the latest trends and developments on marine carbohydrates.

Advances in Food and Nutrition Research recognizes the integral relationship between the food and nutritional sciences and brings together outstanding and comprehensive reviews that highlight this relationship. Volumes provide those in academia and industry with the latest information on emerging research in these constantly evolving sciences.


  • Includes the isolation techniques for the exploration of the marine habitat for novel polysaccharides
  • Discusses biological applications such as antioxidant, antiallergic, antidiabetic, antiobesity and antiviral activity of marine carbohydrates
  • Provides an insight into present trends and approaches for marine carbohydrates

Marine Carbohydrates: Fundamentals and Applications brings together the diverse range of research in this important area which leads to clinical and industrialized products. The volume, number 72, focuses on marine carbohydrates in isolation, biological, and biomedical applications and provides the latest trends and developments on marine carbohydrates. Advances in Food and Nutrition Research recognizes the integral relationship between the food and nutritional sciences and brings together outstanding and comprehensive reviews that highlight this relationship. Volumes provide those in academia and industry with the latest information on emerging research in these constantly evolving sciences. Includes the isolation techniques for the exploration of the marine habitat for novel polysaccharides Discusses biological applications such as antioxidant, antiallergic, antidiabetic, antiobesity and antiviral activity of marine carbohydrates Provides an insight into present trends and approaches for marine carbohydrates

Front Cover 1
Marine Carbohydrates: Fundamentals and Applications, Part A 4
Copyright 5
Contents 6
Contributors 10
Preface 12
Chapter One: Isolation and Characterization of Chitin and Chitosan from Marine Origin 14
1. Current Status of Chitin and Chitosan 15
2. Production of Chitin, Chitosan and Chito-oligosaccharide from Marine Materials 16
2.1. Production of chitin and chitosan 16
2.2. Production of LMW chitosan and chito-oligosaccharides 19
2.2.1. Depolymerization of chitosan with chemical method 20
2.2.2. Depolymerization of chitosan with enzymatic method 22
3. Physicochemical Properties of Chitin and Chitosan 22
3.1. Appearance of chitin and chitosan 22
3.2. Turbidity of chitin and chitosan solution 24
3.3. Determination of degree of deacetylation and degree of acetylation 24
3.4. Determination of molecular weight of chitosan 26
References 27
Chapter Two: Hybrid Carrageenans: Isolation, Chemical Structure, and Gel Properties 30
1. Introduction 31
2. Chemical Structure and Gel Mechanism 32
2.1. Seaweeds chemistry 32
2.2. Hybrid carrageenan macromolecular structure 34
3. Isolation of Hybrid Carrageenan: From the Seaweeds to the Extracted Polysaccharide 36
3.1. Season variability and postharvest storage of algal material 37
3.2. Alkali pretreatment of seaweeds to tune the hybrid carrageenan chemistry 39
3.3. Aquaculture in the dark: An eco-friendly alternative to alkali treatment of carrageenophytes? 39
4. Gel Properties 41
4.1. Rotational rheometry 41
4.1.1. Small deformation 41
4.1.2. Large deformation: Nonlinear rheology 43
4.2. Experimental considerations on the rheology of carrageenan gels 43
4.3. Penetration tests 46
4.4. Effects of salt type and concentration 46
4.5. Effects of hybrid carrageenan concentration 49
4.6. Relationships between the chemical structure and the gel properties 51
4.7. Large deformation behavior and gels under steady flow 52
5. Perspectives 53
Acknowledgments 53
References 53
Chapter Three: Isolation of Low-Molecular-Weight Heparin/Heparan Sulfate from Marine Sources 58
1. Introduction 59
2. History of Heparin 60
3. Anticoagulant Activity of Heparin 61
4. Sources of Heparin 62
4.1. Terrestrial sources 62
4.2. Marine sources 63
5. Difference Between Heparin and HS 65
6. Biomedical Significance of LMWH/HS 66
7. Isolation of LMWH Sulfate 67
7.1. Chemical synthesis of low molecular heparin/HS 67
7.2. Enzymatic synthesis of low molecular heparin/HSs 68
7.3. Chromatography separation of LMWH/HS 69
8. Conclusion 71
References 72
Chapter Four: Isolation and Characterization of Hyaluronic Acid from Marine Organisms 74
1. Introduction 75
2. Targeted Sources for HA in the Past and Present Era 75
3. Structure of Hyaluronic Acid 77
4. Isolation Methods 77
4.1. Extraction by enzyme digestion method 79
4.2. Extraction with organic solvents and sodium acetate 79
4.3. Microbial production 80
4.4. Supplementary methods 80
5. Characterization of Hyaluronic Acid 80
5.1. Electrophoretic analysis 81
5.2. Spectroscopic investigation 81
5.3. Compositional analysis 83
5.4. Determination of molecular weight and viscosity 83
6. Conclusion 84
Acknowledgments 86
References 86
Chapter Five: Extracellular Polysaccharides Produced by Marine Bacteria 92
1. Introduction 93
2. Extracellular Polysaccharides 94
3. Roles of Microbial EPS in the Marine Environment 94
4. Biosynthesis 96
5. Source of Extracellular Polysaccharide-Producing Bacteria 96
6. Isolation of Extracellular Polysaccharide-Producing Bacteria 96
7. Marine EPS-Producing Microorganisms 96
7.1. Marine bacteria 96
7.2. Marine cyanobacteria 100
7.3. Marine actinobacteria 101
8. Biotechnological Applications of Extracellular Polysaccharides 102
8.1. Medicinal applications 102
8.2. Gelling agent 102
8.3. Emulsifiers 103
8.4. Heavy metal removal 103
8.5. Enhanced oil recovery 103
9. Conclusions 103
Acknowledgments 104
References 104
Chapter Six: Biological Activities of Alginate 108
1. Introduction 109
2. Macrophage-Stimulating Activities of Alginates 111
2.1. Sources of alginates 111
2.2. Preparation of alginate oligomers 111
2.3. Cytokine-inducing activities of alginates with different molecular characteristics in mouse macrophage cell line RAW ... 113
2.4. Effects of enzymatic digestion on the TNF-a-inducing activities of alginates 114
2.5. Effects of specific MAP kinase inhibitors on the TNF-a-inducing activities of alginate (I-S) and its enzymatically di ... 116
2.6. Nitric oxide-inducing activities of alginate and its enzymatically digested alginate oligomer mixture 118
3. Antioxidant Activities of Alginate 119
References 121
Chapter Seven: Biological Activities of Carrageenan 126
1. Introduction 126
2. Carrageenan Source and Extraction 128
3. Biological Activities 130
3.1. Anticoagulant activity 130
3.2. Antiviral agents 130
3.3. Cholesterol-lowering effects 132
3.4. Immunomodulatory activity 132
3.5. Antioxidant activity 133
3.6. Antitumor activity 133
4. Food and Technological Applications of Carrageenan 134
5. Conclusions 135
References 136
Chapter Eight: Biological Activities of Heparan Sulfate 138
1. Introduction 138
2. Materials and Methods 140
2.1. Isolation 140
2.2. Anticoagulant activity 141
2.3. Antiproliferative activity 141
2.4. 1H-NMR 141
3. Results 142
4. Discussion 143
Acknowledgments 147
References 147
Chapter Nine: Beneficial Effects of Hyaluronic Acid 150
1. Introduction 151
2. Structure of Hyaluronic Acid 152
3. Properties of Hyaluronic Acid 154
4. Modification of Hyaluronic Acid 154
5. Applications of Hyaluronic Acid 159
5.1. Biomedical applications 159
5.2. TE applications 165
5.2.1. Lung TE applications 165
5.2.2. Bone TE applications 166
5.2.3. Stem cells for TE applications 168
5.2.4. Cartilage TE applications 168
5.2.5. Heart TE applications 170
5.2.6. Brain TE applications 171
5.2.7. Dermal TE applications 172
5.3. Drug delivery applications 173
5.4. Gene delivery applications 175
5.5. Targeted drug delivery 176
5.6. HA hydrogels 178
5.7. Tumor treatment 179
5.8. Environmental applications 180
5.9. Sensors 181
6. Conclusion 181
Acknowledgments 181
References 181
Chapter Ten: Fucoidans from Marine Algae as Potential Matrix Metalloproteinase Inhibitors 190
1. Introduction 191
2. Sulfated Polysaccharides as Potential MMPIs 195
2.1. Galactans as potential MMPIs 195
2.2. Fucoidans as potential MMPIs 197
3. Conclusions and Further Prospects 201
Acknowledgments 202
References 202
Chapter Eleven: Anticancer Effects of Fucoidan 208
1. Introduction 208
2. Seaweed Polysaccharides 209
2.1. Fucoidan 210
2.2. Fucoidan structure and function 211
3. Fucoidan and Cancer 213
3.1. Anticancer effect 213
3.2. Role of fucoidan on metastasis, angiogenesis, and signaling mechanism 217
4. Conclusions 219
Acknowledgment 220
References 220
Chapter Twelve: Anticancer Effects of Chitin and Chitosan Derivatives 228
1. Introduction 228
2. Anticancer Activity as a Therapeutic Agent 230
3. Anticancer Activity as a Carrier 233
4. Conclusion 235
References 235
Index 240

Chapter Two

Hybrid Carrageenans


Isolation, Chemical Structure, and Gel Properties


Loic Hilliou1    Institute for Polymers and Composites/I3N, University of Minho, Guimarães, Portugal
1 Corresponding author: email address: loic@dep.uminho.pt

Abstract


Hybrid carrageenan is a special class of carrageenan with niche application in food industry. This polysaccharide is extracted from specific species of seaweeds belonging to the Gigartinales order. This chapter focuses on hybrid carrageenan showing the ability to form gels in water, which is known in the food industry as weak kappa or kappa-2 carrageenan. After introducing the general chemical structure defining hybrid carrageenan, the isolation of the polysaccharide will be discussed focusing on the interplay between seaweed species, extraction parameters, and the hybrid carrageenan chemistry. Then, the rheological experiments used to determine the small and large deformation behavior of gels will be detailed before reviewing the relationships between gel properties and hybrid carrageenan chemistry.

Keywords

Hybrid carrageenan

Gel

Solution

Carrageenan mixture

Strain at break

1 Introduction


Carrageenans are natural polymers contained in specific species of red seaweeds belonging to the Gigartinales order. These are polysaccharides showing a variety of chemical structures, resulting from a complex interplay between the seaweeds species, the seaweed life stage, and the extraction process used to recover the polysaccharide. Among the various types of carrageenans showing different gelling or viscosity enhancement properties in aqueous solutions, hybrid carrageenans have recently received increased interest (van de Velde, 2008). The latter is motivated by the steadily increasing demand for gelling additives for food and nonfood application, which puts under pressure the farming of seaweeds producing kappa-carrageenan (K) and iota-carrageenan (I) (Bixler, 1996; Bixler & Porse, 2011). Thus, alternative algal resources for carrageenan production are highly demanded (Bixler & Porse, 2011; McHugh, 2003), and seaweeds producing hybrid carrageenans can be a solution to the issue triggered by the market. Recently, hybrid carrageenans were found to positively replace mixtures of K and I used in niche application in dairy food (Bixler, Johndro, & Falshaw, 2001; Villanueva, Mendoza, Rodrigueza, Romero, & Montaño, 2004). In spite of the industrial need and interest in using hybrid carrageenans, there is a lack in the literature for the structural and mechanical characterization of hybrid carrageenan gels (van de Velde, 2008), which explains why the relationships between the hybrid carrageenan chemical structure, the gel microstructure, and the gel mechanical properties are not yet understood.

This chapter focuses on the gel properties of hybrid carrageenan and addresses the relationships identified between the seaweeds biology, the extraction parameters, the chemical structure, and the gel properties. First, the biology and chemical composition of seaweeds producing hybrid carrageenan will be described. Then, the chemical structure of gelling hybrid carrageenan will be introduced together with the general proposed mechanisms for gel formation for K and I in the presence of salt. As this chapter is concerned with gelling hybrid carrageenan, two types of polysaccharides are solely discussed, namely, kappa/iota-hybrid carrageenan (KI) and their biological precursor kappa/iota/mu/nu-hybrid carrageenan (KIMN). Thus, the gel formation builds up on the mechanism devised for K and I. Then, the extraction process used to isolate the polysaccharide and the effect of extraction parameters on the macromolecular structure and chemistry of recovered polysaccharides will be discussed. With the characterized hybrid carrageenan in hand, gels will be formed and the rheological technique used to analyze their mechanical properties will be introduced before describing the effects of salt and polysaccharide concentrations on gel setting and elastic properties. Then, the interplay between hybrid carrageenan chemical structure and the gel properties will be discussed. Finally, the effect of steady flow on the gel setting and gel properties will be addressed as its relevance to the delivery of new food ingredients such as fluid gels or microgels (Garrec & Norton, 2012) and to the industrial processing of carrageenan is bright.

2 Chemical Structure and Gel Mechanism


2.1 Seaweeds chemistry


Before tackling the chemical structure of KI and KIMN, it is imperative to look at the chemical composition of seaweeds belonging to the Gigartinaceae, Petrocelidaceae, and Phylophoraceae families which are the major carrageenophytes used for the production of gelling hybrid carrageenan (see for instance the Stancioff's diagram in Bixler, 1996). Fourier transform infrared diffuse reflectance spectroscopy (DRIFT) is a versatile spectroscopic method which boosted the chemical analysis of seaweeds as no sample preparation but grinding dried seaweeds is required. DRIFT was applied to screen for the chemical composition of Gigartinales by Chopin, Kerin, and Mazerolle (1999). This extensive study performed on more than 50 species of the Gigartinales order confirmed that the chemical composition of seaweeds depends on its life stage, vegetative, or reproductive and in the latter case depends also on the gender of the gametophyte of specific seaweeds. Vegetative Gigartinales seaweeds are made of highly sulfated and nongelling carrageenan of the lambda-type, whereas the reproductive life stage produces K, I mu-carrageenan (M) and nu-carrageenan (N) in fronds and thalli of female and male gametophytes. The disaccharide units corresponding to these carrageenans are displayed in Fig. 2.1. This general picture was reached in earlier studies which relied on the isolation of polysaccharides with the inherent polymer chemical modification associated with the extraction process (see the tables in Chopin et al., 1999 where a direct comparison between DRIFT results and reports from the literature is offered). The impact of such modification on the qualitative chemical analysis of compounds contained in the seaweed was pointed recently in a study on Mastocarpus stellatus (Azevedo et al., 2013). DRIFT spectra of the native extracts obtained without alkali treatment showed all characteristic bands of K, I, M, and N disaccharide units, whereas both fronds and thalli did not show the specific band assigned to I, showing up at 805 cm− 1. The relative content in K, I, M, and N is however difficult to assess with this semiquantitative spectroscopic technique and thus hardly shows that the ratio between K and I is specific to each seaweed. This is illustrated in Fig. 2.2 where the DRIFT spectra of M. stellatus and Chondrus crispus hand collected on the Northern Portuguese coast are displayed, together with the spectra of commercial K and I (Sigma-Aldrich, Germany). Fronds and thalli of seaweeds were scratched on the DRIFT accessory pad of an FTIR spectrometer (Spectrum 100, PerkinElmer Ltd., UK), whereas powders were directly laid on the accessory. Both M. stellatus and C. crispus show the diagnose bands for I (805 cm− 1) and K (930 and 845 cm− 1). However, assessing whether C. crispus contains more K than M. stellatus is hard since ratios of K over I band intensities are 1.4 ± 0.2 for C. crispus against 1.1 ± 0.3 for M. stellatus, with errors computed from the averaging of five replicates from different fronds. Thus, one relies on extracting the polysaccharide from the seaweed and analyzing by 1H NMR the KI which are soluble in water to compute such ratios. A nice example of such exercise can be found in van de Velde et al. (2005) where three seaweed species harvested on the Portuguese coast showed K over I ratios ranging from 0.02 to 1.

Figure 2.1 Chemical structure of disaccharide units of kappa-carrageenan (K), iota-carrageenan (I) mu-carrageenan (M), and nu-carrageenan (N) which are the building blocks of the gelling hybrid carrageenan KI and KIMN. The gelling mechanisms for K and I are depicted together with the block copolymer structure of KI and KIMN.
Figure 2.2 DRIFT spectra of Gigartinales and of commercial carrageenan. From bottom to top: kappa-carrageenan, iota-carrageenan, Condrus crispus (frond of a female gametophyte), and Mastocarpus stellatus (frond of a female gametophyte). Vertical lines indicate the bands assigned to galactose (975 cm− 1), 3,6-anhydrogalactose—DA (930 cm− 1), the sulfate group on the fourth carbon of the galactose—G4S (845 cm− 1), and the sulfate group on the second carbon of the 3,6-anhydrogalactose—DA2S (805 cm− 1). The latter band is specific to iota-carrageenan.

2.2 Hybrid carrageenan macromolecular structure


The chemical structure of hybrid carrageenan has been vividly debated between two schools, and it is the author's opinion that the issue has been only recently solved by the publication of two critical papers (Guibet et al., 2008; van de Velde, Peppelman,...

Erscheint lt. Verlag 6.8.2014
Mitarbeit Herausgeber (Serie): Se-Kwon Kim
Sprache englisch
Themenwelt Naturwissenschaften Biologie Biochemie
Naturwissenschaften Biologie Limnologie / Meeresbiologie
Technik Lebensmitteltechnologie
ISBN-10 0-12-800366-9 / 0128003669
ISBN-13 978-0-12-800366-4 / 9780128003664
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 7,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 10,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Donald Voet; Judith G. Voet; Charlotte W. Pratt

eBook Download (2019)
Wiley-VCH Verlag GmbH & Co. KGaA
CHF 72,25

von Donald Voet; Judith G. Voet; Charlotte W. Pratt

eBook Download (2019)
Wiley-VCH Verlag GmbH & Co. KGaA
CHF 72,25