Science of Synthesis: Houben-Weyl Methods of Molecular Transformations Vol. 46 (eBook)
744 Seiten
Thieme (Verlag)
978-3-13-172261-4 (ISBN)
Science of Synthesis – Volume 46: 1,3-Dienes 1
Title page 3
Imprint 5
Preface 6
Overview 8
Table of Contents 10
Introduction 24
46.1 Synthesis Using the Wittig and Related Phosphorus-, Silicon-, or Sulfur-Based Reactions 46
46.1.1 The Wittig Reaction 47
46.1.1.1 Method 1: Synthesis from Phosphorus Ylides and Enones or Enals 47
46.1.1.1.1 Variation 1: From Stabilized Ylides 48
46.1.1.1.2 Variation 2: From Nonstabilized Ylides 50
46.1.1.2 Method 2: Synthesis from Allyl Phosphorus Ylides and Carbonyl Compounds 53
46.1.1.3 Method 3: Synthesis by Tandem Oxidation--Wittig Reaction 57
46.1.1.3.1 Variation 1: Simultaneous Diene Formation 58
46.1.1.3.2 Variation 2: Sequential Diene Formation 58
46.1.2 The Horner--Wittig Reaction 60
46.1.2.1 Method 1: Synthesis from Phosphine Oxides and Enals 61
46.1.2.2 Method 2: Synthesis from Alkenylphosphine Oxides and Aldehydes or Ketones 61
46.1.3 The Horner--Wadsworth--Emmons Reaction 62
46.1.3.1 Method 1: Synthesis from Phosphonates and Enones or Enals 63
46.1.3.1.1 Variation 1: The Ando Method 65
46.1.3.1.2 Variation 2: The Still--Gennari Modification 66
46.1.3.2 Method 2: Synthesis from Alkenylphosphonates and Carbonyl Compounds 67
46.1.3.2.1 Variation 1: The Still--Gennari Modification 69
46.1.4 The Peterson Reaction 69
46.1.4.1 Method 1: Synthesis from a,ß-Unsaturated Carbonyl Compounds and Alkylsilanes 70
46.1.4.2 Method 2: Synthesis from Carbonyl Compounds and Allylsilanes 72
46.1.4.3 Method 3: The Vinylogous Peterson Elimination 76
46.1.5 The Julia Reaction and Its Variations 77
46.1.5.1 Method 1: Synthesis from a,ß-Unsaturated Carbonyl Compounds and Alkyl Sulfones 78
46.1.5.2 Method 2: Synthesis from Carbonyl Compounds and Allyl Sulfones 80
46.1.5.3 Method 3: The Keck Variation 82
46.2 Synthesis by Alkylidenation with Metal--Carbene Complexes and Related Reagents 86
46.2.1 Methylenation 86
46.2.1.1 Method 1: Synthesis Using Titanium-Based Reagents 86
46.2.1.1.1 Variation 1: Using the Tebbe Reagent 86
46.2.1.1.2 Variation 2: Using Bis(.5-cyclopentadienyl)(dihalozinc)(µ-methylene)titanium 91
46.2.1.1.3 Variation 3: Using Bis(.5-cyclopentadienyl)dimethyltitanium(IV) (The Petasis Reagent) 92
46.2.1.1.4 Variation 4: Using Titanacyclobutenes 95
46.2.1.2 Method 2: Synthesis Using Zinc-Based Reagents 96
46.2.1.3 Method 3: Synthesis Using Miscellaneous Reagents 100
46.2.2 Halomethylenation and Related Reactions 102
46.2.2.1 Method 1: Synthesis Using Titanium-Based Reagents 103
46.2.2.2 Method 2: Synthesis Using Zinc-Based Reagents 104
46.2.2.3 Method 3: Synthesis Using Chromium-Based Reagents 105
46.2.3 Other Alkylidenation Reactions 110
46.2.3.1 Method 1: Synthesis Using Titanium-Based Reagents 110
46.2.3.2 Method 2: Synthesis Using Zinc-Based Reagents 113
46.2.3.3 Method 3: Synthesis Using Chromium-Based Reagents 114
46.2.3.4 Method 4: Synthesis Using Miscellaneous Reagents 115
46.3 Synthesis by Alkene Metathesis 120
46.3.1 Method 1: Ring-Closing Metathesis of Enynes 125
46.3.1.1 Variation 1: Using Grubbs' Catalysts 125
46.3.1.2 Variation 2: Polycyclization Using Grubbs' Catalysts 130
46.3.1.3 Variation 3: Using the Hoveyda--Blechert Catalyst 135
46.3.1.4 Variation 4: Polycyclization Using the Hoveyda--Blechert Catalyst 137
46.3.1.5 Variation 5: Using the Schrock Catalyst 138
46.3.2 Method 2: Ring-Closing Metathesis of Alkenes with Conjugated Dienes 141
46.3.3 Method 3: Cross Metathesis of Alkynes with Alkenes 144
46.3.3.1 Variation 1: Metathesis of Alkynes with Ethene 144
46.3.3.2 Variation 2: Metathesis of Terminal Alkynes with Other Acyclic Alkenes 148
46.3.3.3 Variation 3: Metathesis of Internal Alkynes with Acyclic Alkenes 152
46.3.3.4 Variation 4: Ethene-Assisted Metathesis 153
46.3.3.5 Variation 5: Metathesis of Alkynes with Cycloalkenes 154
46.3.4 Method 4: Cross Metathesis of Alkenes with Conjugated Dienes 158
46.3.5 Method 5: Cross Metathesis of Alkenes Followed by Elimination 163
46.3.6 Method 6: Ring-Rearrangement Metathesis 164
46.4 Synthesis by Aldol and Related Condensation Reactions 170
46.4.1 Synthesis of 1,3-Dienes with an Electron-Withdrawing Group at C1 171
46.4.1.1 Method 1: Formation of the a,ß-Alkene 171
46.4.1.1.1 Variation 1: Under Basic Conditions with Thermodynamic Control 172
46.4.1.1.2 Variation 2: Under Kinetic Conditions with Subsequent Elimination 173
46.4.1.1.3 Variation 3: Under Lewis Acidic Conditions 174
46.4.1.1.4 Variation 4: Other Approaches 176
46.4.1.2 Method 2: Formation of the .,d-Alkene 176
46.4.1.2.1 Variation 1: Driven by Extended Conjugation 177
46.4.1.2.2 Variation 2: Lactone Formation 177
46.4.1.2.3 Variation 3: Other Reactions 179
46.4.2 Synthesis of 1,3-Dienes with an Electron-Withdrawing Group at C2 181
46.4.2.1 Method 1: Formation of the a,ß-Alkene 181
46.4.2.1.1 Variation 1: Single-Step Reactions 182
46.4.2.1.2 Variation 2: Multistep Reactions 182
46.4.2.1.3 Variation 3: Other Strategies 183
46.4.3 Synthesis of 1,3-Dienes with Two Electron-Withdrawing Groups at C1 183
46.4.3.1 Method 1: Formation of the a,ß-Alkene 184
46.4.3.1.1 Variation 1: Under Standard Basic Conditions 184
46.4.3.1.2 Variation 2: Using Alternative Promoters 185
46.4.3.1.3 Variation 3: From Non-Ester Substrates 185
46.4.3.2 Method 2: Formation of the .,d-Alkene 186
46.4.4 Synthesis of 1,3-Dienes with Electron-Withdrawing Groups at C1 and C3 187
46.4.4.1 Method 1: Knoevenagel and Related Condensations 188
46.4.5 Synthesis of 1,3-Dienes with Electron-Withdrawing Groups at C2 and C3 189
46.4.5.1 Method 1: Single Stobbe Reaction 189
46.4.5.2 Method 2: Double Stobbe Reaction 190
46.5 Synthesis by Metal-Mediated C--C Bond Forming Reactions of Alkynes, Diynes, and Enynes 196
46.5.1 Acyclic 1,3-Dienes 196
46.5.1.1 Method 1: Nickel-Catalyzed Aldehyde--Alkyne and Aldehyde--Enyne Coupling 196
46.5.1.1.1 Variation 1: Nickel-Catalyzed Aldehyde--Alkyne Coupling 196
46.5.1.1.2 Variation 2: Nickel-Catalyzed Aldehyde--Enyne Coupling 197
46.5.1.2 Method 2: Coupling of Alkynes 198
46.5.1.2.1 Variation 1: Titanium-Mediated Carbometalation of Internal Alkynes 199
46.5.1.2.2 Variation 2: Zirconium-Mediated Carbometalation of Alkynes 200
46.5.1.2.3 Variation 3: Ruthenium-Catalyzed Dimerization of Propargyl Alcohols 203
46.5.1.3 Method 3: 2:1 Co-oligomerization of Alkynes and Alkenes 204
46.5.1.3.1 Variation 1: Cobalt-Mediated C--H Activation 204
46.5.1.3.2 Variation 2: Nickel-Mediated C--H Activation 205
46.5.2 Endocyclic 1,3-Dienes 206
46.5.2.1 Method 1: Synthesis via Zirconacyclopentadienes 206
46.5.2.2 Method 2: Six-Membered Rings by [2 + 2 + 2] Cycloaddition 208
46.5.2.2.1 Variation 1: Titanium-Catalyzed Cycloaddition 209
46.5.2.2.2 Variation 2: Zirconium-Mediated Cycloaddition 209
46.5.2.2.3 Variation 3: Ruthenium-Catalyzed Cycloaddition 210
46.5.2.2.4 Variation 4: Cobalt-Mediated Cycloaddition 213
46.5.2.2.5 Variation 5: Rhodium-Catalyzed Cycloaddition 220
46.5.2.2.6 Variation 6: Iridium-Catalyzed Cycloaddition 224
46.5.2.2.7 Variation 7: Nickel-Catalyzed Cycloaddition 226
46.5.2.3 Method 3: Six-Membered Rings by Cycloisomerization of 1,5-Enynes 228
46.5.2.4 Method 4: Seven-Membered Rings by Cycloaddition or Cycloisomerization of Diynes 229
46.5.2.5 Method 5: Codimerization Reaction between 1,3-Dienes and Alkynes 230
46.5.2.6 Method 6: Cobalt-Mediated Syntheses of Alkaloids and Steroids 230
46.5.3 1,3-Dienes Having Two Exocyclic Double Bonds 233
46.5.3.1 Method 1: Cyclization of Diynes 233
46.5.3.1.1 Variation 1: Titanium-Promoted Cyclization of Diynes 233
46.5.3.1.2 Variation 2: Zirconacene-Derivative-Promoted Cyclization of Diynes 234
46.5.3.1.3 Variation 3: Nickel-Catalyzed Cyclization of Diynes 235
46.5.3.2 Method 2: Cyclization of Enynes 236
46.5.3.2.1 Variation 1: Palladium-Catalyzed Cycloisomerization of Enynes 237
46.5.3.2.2 Variation 2: Ruthenium-Catalyzed Cycloisomerization of Enynes 238
46.5.3.2.3 Variation 3: Iridium(I)-Catalyzed Cycloisomerization of Enynes 239
46.5.3.2.4 Variation 4: Cobalt(I)-Mediated Cycloisomerization of 1,n-Enynes 240
46.5.3.3 Method 3: Cyclization of Allenynes 241
46.5.4 Conjugated Vinylic Cycloalkenes 242
46.5.4.1 Method 1: Cycloisomerization of 1,6-Enynes 242
46.5.4.1.1 Variation 1: Palladium-Catalyzed Cycloisomerization To Give Vinylcyclopentenes 242
46.5.4.1.2 Variation 2: Ruthenium-Catalyzed Cycloisomerization To Give Vinylcycloalkenes 243
46.5.4.1.3 Variation 3: Platinum- and Gold-Catalyzed Cycloisomerization To Give Vinylcycloalkenes 244
46.5.4.1.4 Variation 4: Iridium-Catalyzed Cycloisomerization To Give Vinylcycloalkenes 246
46.5.4.2 Method 2: Cycloisomerization of Allenynes 247
46.5.4.2.1 Variation 1: Platinum-Catalyzed Cycloisomerization To Give Vinylcycloalkenes 247
46.5.4.2.2 Variation 2: Gold- and Platinum-Catalyzed Cycloisomerization To Give Cross-Conjugated Trienes 248
46.5.4.2.3 Variation 3: Rhodium-Catalyzed Isomerization To Give Cross-Conjugated Trienes 248
46.5.4.2.4 Variation 4: Titanium(II)-Mediated Cyclization To Give Cross-Conjugated Trienes 249
46.5.4.2.5 Variation 5: Cobalt(I)-Mediated Cyclization To Give Cross-Conjugated Trienes 250
46.5.5 1,3-Dienes Having Endocyclic and Exocyclic Double Bonds 250
46.5.5.1 Method 1: Cycloisomerization of 1,6- and 1,7-Enynes 251
46.5.5.1.1 Variation 1: Palladium-Catalyzed Cycloisomerization 251
46.5.5.1.2 Variation 2: Gold-Catalyzed Cycloisomerization 251
46.5.5.1.3 Variation 3: Rhodium-Catalyzed Cycloisomerization 253
46.5.5.1.4 Variation 4: Ruthenium-Catalyzed Cycloisomerization 254
46.5.5.2 Method 2: Cycloisomerization of Allenynes 254
46.5.6 s-trans-Heteroannular 1,3-Dienes 255
46.5.6.1 Method 1: Cycloisomerization of Dienynes 255
46.5.6.2 Method 2: Cycloisomerization of Allenynes 255
46.6 Synthesis by Metal-Mediated Coupling Reactions 262
46.6.1 Method 1: Stoichiometric Synthesis of 1,3-Dienes by Metal-Mediated Coupling Reactions via Migratory Insertion 267
46.6.1.1 Variation 1: 1,4-Disubstituted E,E-1,3-Dienes by [2C + 2C] Alkenyl--Alkenyl Coupling via Organoboron Migratory Insertion Reactions 268
46.6.1.2 Variation 2: 1,4-Disubstituted E,Z-1,3-Dienes by [2C + 2C] Alkynyl--Alkenyl Coupling via Organoboron Migratory Insertion Reactions 269
46.6.1.3 Variation 3: 1,4-Disubstituted Z,Z-1,3-Dienes by [2C + 2C] Alkynyl--Alkynyl Coupling via Boron- or Zirconium-Mediated Migratory Insertion 270
46.6.1.4 Variation 4: Other Organozirconium Migratory Insertion Reactions for the Synthesis of 1,3-Dienes 271
46.6.2 Method 2: Stoichiometric Synthesis of 1,3-Dienes by Metal-Mediated [2C + 2C] Coupling via Carbometalation 272
46.6.2.1 Variation 1: Synthesis of 1,3-Dienes by Controlled Alkyne Dimerization via syn-Carbometalation 274
46.6.2.2 Variation 2: Chelation-Guided anti-Carbometalation with Alkenyl- and Alkynylmetals 275
46.6.2.3 Variation 3: Zirconium-Promoted Ene--Yne Coupling and Alkyne Dimerization 275
46.6.2.4 Variation 4: Titanium-Promoted Ene--Yne Coupling and Alkyne Dimerization 278
46.6.3 Method 3: Synthesis of 1,3-Dienes by Palladium-Catalyzed Cross-Coupling Reactions 279
46.6.3.1 Variation 1: 1,3-Dienes Containing the Parent Vinyl and/or 1-Monosubstituted Vinyl Groups
289
46.6.3.2 Variation 2: 1,4-Disubstituted 1,3-Dienes 294
46.6.3.3 Variation 3: Trisubstituted 1,3-Dienes Excluding Those Containing a Vinyl or Vinylidene Group 298
46.6.3.4 Variation 4: Tetrasubstituted 1,3-Dienes Excluding Those Containing a Fully Substituted Alkenyl Group 308
46.6.3.5 Variation 5: Tetra-, Penta-, and Hexasubstituted 1,3-Dienes Containing One or Two Fully Substituted Alkenyl Groups Excluding 1,1,2,3-Tetrasubstituted 1,3-Dienes 310
46.6.4 Method 4: 1,3-Dienes through Modification of 4C Compounds 313
46.6.4.1 Variation 1: 1,3-Dienes via Heterofunctionalized 1,3-Dienes 313
46.6.4.2 Variation 2: 1,3-Dienes via 1,3-Enynes and 1,3-Diynes 323
46.6.5 Method 5: Synthesis of 1,3-Dienes by Catalytic Carbometalation and Oxymetalation Reactions 331
46.6.5.1 Variation 1: 1,3-Dienes via the Heck Reaction 331
46.6.5.2 Variation 2: Other Catalytic Carbopalladation Routes to 1,3-Dienes 338
46.6.5.3 Variation 3: 1,3-Dienes via Oxymetalation Reactions 349
46.6.6 Method 6: Synthesis of 1,3-Diene-Containing Oligoenes and Oligoenynes of Natural Origin and Related Compounds 355
46.7 Synthesis by Cycloaddition and Electrocyclic Reactions 376
46.7.1 Method 1: Thermal Electrocyclic Ring-Opening Reactions of Cyclobutenes 376
46.7.1.1 Variation 1: Acyclic 1,3-Dienes from 3,4-Unsubstituted Cyclobutenes 377
46.7.1.2 Variation 2: Acyclic 1,3-Dienes from 3-Substituted Cyclobutenes 379
46.7.1.3 Variation 3: Acyclic 1,3-Dienes from Multisubstituted Cyclobutenes 382
46.7.1.4 Variation 4: Cycloalka-1,3-dienes from 3,4-Fused Cyclobutenes (Ring Expansion) 387
46.7.1.5 Variation 5: 1,3-Dienes from 1,2-Fused Cyclobutenes 391
46.7.1.6 Variation 6: 1,3-Dienes from 1,4-Fused Cyclobutenes 392
46.7.2 Method 2: Photochemical Reactions of Cyclobutenes 393
46.7.3 Method 3: Thermal Six-Electron Electrocyclizations To Give Cyclohexa-1,3-dienes 394
46.7.3.1 Variation 1: Cyclohexa-1,3-dienes from Acyclic 1,3,5-Trienes 397
46.7.3.2 Variation 2: 1,6-Fused Cyclohexa-1,3-dienes from 1,2-Fused 1,3,5-Trienes 400
46.7.3.3 Variation 3: 1,2-Fused Cyclohexa-1,3-dienes from 2,3-Fused 1,3,5-Trienes 403
46.7.3.4 Variation 4: 2,3-Ring-Fused Cyclohexa-1,3-dienes from 3,4-Ring-Fused 1,3,5-Trienes 405
46.7.3.5 Variation 5: 5,6-Fused Cyclohexa-1,3-dienes from Cycloalka-1,3,5-trienes 406
46.7.4 Method 4: Photochemical Six-Electron Electrocyclizations 408
46.7.5 Method 5: Unsaturated Carbocycles via a Combination of Thermally Induced Electrocyclizations 409
46.7.6 Method 6: [6 + 4] Cycloadditions between Buta-1,3-dienes and Hexa-1,3,5-trienes 412
46.7.6.1 Variation 1: [6 + 4] Cycloadditions of Tropones 412
46.7.6.2 Variation 2: [6 + 4] Cycloadditions of Fulvenes 417
46.8 Synthesis by Extrusion 424
46.8.1 Extrusion of Alkenes 424
46.8.1.1 Method 1: Thermal Cracking of Cyclohexene 424
46.8.1.2 Method 2: Extrusion of Cyclopentadiene 425
46.8.1.2.1 Variation 1: Cracking of Dicyclopentadiene 425
46.8.1.2.2 Variation 2: Cyclopentadiene as a Protecting Group 425
46.8.1.3 Method 3: Extrusion of Maleic Anhydride 426
46.8.2 Extrusion of Carbon Dioxide 427
46.8.2.1 Method 1: Carbon Dioxide Extrusion from Six-Membered Lactones 427
46.8.2.2 Method 2: Carbon Dioxide Extrusion with In Situ Trapping of the Diene 428
46.8.2.3 Method 3: Carbon Dioxide Extrusion from Vinyl-Substituted ß-Lactones 429
46.8.2.3.1 Variation 1: Decarboxylative Extrusion from ß-Lactones 429
46.8.2.3.2 Variation 2: Tandem Lactone Formation--Carbon Dioxide Extrusion 430
46.8.3 Extrusion of Carbon Monoxide 431
46.8.3.1 Method 1: Carbon Monoxide Extrusion from Monocyclic Cyclopent-3-en-1-ones 431
46.8.3.2 Method 2: Extrusion of a Bridging Carbon Monoxide from Strained Rings 432
46.8.3.3 Method 3: Carbon Monoxide Extrusion with In Situ Trapping of the Diene 433
46.8.3.4 Method 4: Carbon Monoxide Extrusion To Afford Cyclooctatetraenes 434
46.8.3.5 Method 5: Carbon Monoxide Extrusion from ß-Allenyl Aldehydes 434
46.8.4 Extrusion of Sulfur Dioxide 435
46.8.4.1 Method 1: Thermal Extrusion of Sulfur Dioxide from 2,5-Dihydrothiophene 1,1-Dioxides 435
46.8.4.1.1 Variation 1: Preparation of 1,4-Disubstituted 1,3-Dienes via Thermolysis 436
46.8.4.1.2 Variation 2: Preparation of Terminal 1,3-Dienes via Thermolysis 438
46.8.4.1.3 Variation 3: Preparation of 2,3-Disubstituted 1,3-Dienes via Thermolysis 439
46.8.4.1.4 Variation 4: Preparation of Other Substitution Patterns via Thermolysis 441
46.8.4.2 Method 2: Thermolysis Followed by In Situ Trapping 441
46.8.4.2.1 Variation 1: Intermolecular Diels--Alder Trapping of the Diene 442
46.8.4.2.2 Variation 2: Intramolecular Diels--Alder Trapping of the Diene 443
46.8.4.2.3 Variation 3: Other In Situ Trapping Reactions 444
46.8.4.3 Method 3: Extrusion from Cyclic Sulfones in the Presence of Lithium Aluminum Hydride 445
46.8.4.4 Method 4: Reaction of Cyclic Sulfones with Ultrasonically Dispersed Potassium 446
46.8.4.4.1 Variation 1: Using Standard Conditions 446
46.8.4.4.2 Variation 2: In the Presence of a Proton Source 447
46.8.4.5 Method 5: Tandem Retro-Diels--Alder/Sulfur Dioxide Extrusion from Cyclic Sulfones 448
46.8.4.6 Method 6: Photochemical Extrusion of Sulfur Dioxide from 2,5-Dihydrothiophene 1,1-Dioxides 449
46.8.4.7 Method 7: Extrusion from In Situ Generated Thiirane 1,1-Dioxides (The Ramberg--Bäcklund Reaction) 450
46.8.4.7.1 Variation 1: Hexa-1,3,5-trienes from Diallylic Sulfones 450
46.8.4.7.2 Variation 2: Terminal 1,3-Dienes via The Vinylogous Ramberg--Bäcklund Reaction 451
46.8.4.7.3 Variation 3: Application of the Ramberg--Bäcklund Reaction to an Iterative Ring-Growing Procedure 452
46.8.4.8 Method 8: Base-Induced Isomerization and Thermal Elimination of 2,3-Dihydrothiophene 1,1-Dioxides 453
46.8.4.9 Method 9: Extrusion from Cyclic Sulfinate Esters 454
46.8.4.10 Method 10: 1,3,5-Trienes from 2,7-Dihydrothiepin 1,1-Dioxides 455
46.8.4.10.1 Variation 1: Synthesis of Open-Chain 1,3,5-Trienes 455
46.8.4.10.2 Variation 2: Synthesis of Cyclodecatetraenes 456
46.8.4.10.3 Variation 3: Synthesis of Cyclooctatetraenes 456
46.8.5 Extrusion of Nitrogen 457
46.8.5.1 Method 1: Dienes from 2,5-Dihydro-1H-pyrroles 458
46.8.5.2 Method 2: Extrusion of Nitrogen from Hydrazine-Derived Azo Compounds 458
46.8.5.3 Method 3: Extrusion of Nitrogen from Pyridazine-Derived Azo Compounds 459
46.8.6 Extrusion of 4-Phenyl-3H-1,2,4-triazole-3,5(4H)-diones and Related Molecules 459
46.8.6.1 Method 1: Extrusion of 4-Phenyl-3H-1,2,4-triazole-3,5(4H)-dione by Thermolysis 460
46.8.6.2 Method 2: Extrusion of 4-Phenyl-3H-1,2,4-triazole-3,5(4H)-dione in the Presence of a Reducing Agent 462
46.8.6.3 Method 3: Extrusion from Related Diazines 464
46.9 Synthesis by Elimination 468
46.9.1 Synthesis by 1,2-Elimination 468
46.9.1.1 Method 1: Elimination of Hydrogen and a Heteroatom 469
46.9.1.1.1 Variation 1: Dehydrohalogenation 469
46.9.1.1.2 Variation 2: Dehydration 471
46.9.1.1.3 Variation 3: Loss of Acetic Acid or Trifluoroacetic Acid 480
46.9.1.1.4 Variation 4: Loss of a Sulfonic Acid 483
46.9.1.1.5 Variation 5: Loss of Hydrogen and an Alkoxy or Aryloxy Group 486
46.9.1.1.6 Variation 6: Loss of Hydrogen and an Arylsulfinyl Group 487
46.9.1.1.7 Variation 7: Loss of Hydrogen and a Selenium-Containing Group 488
46.9.1.1.8 Variation 8: Loss of Hydrogen and a Nitrogen-Containing Group 491
46.9.1.2 Method 2: Elimination of a Silicon-Containing Group and a Heteroatom 491
46.9.1.2.1 Variation 1: Loss of Silicon- and Oxygen-Bearing Groups 492
46.9.1.2.2 Variation 2: Loss of Silicon- and Nitrogen-Containing Groups 494
46.9.1.3 Method 3: Elimination of a Carbon Fragment and a Heteroatom-Containing Group 495
46.9.1.3.1 Variation 1: Loss of Acetic Acid and Carbon Dioxide 495
46.9.1.3.2 Variation 2: Grob Fragmentation 496
46.9.1.4 Method 4: Elimination of Two Heteroatoms or Heteroatom-Containing Groups 498
46.9.1.4.1 Variation 1: Loss of an Oxygen-Containing Group and a Halogen Atom 498
46.9.1.4.2 Variation 2: Dehalogenation 499
46.9.1.4.3 Variation 3: Loss of Nitrate and Acetate (or Methanesulfonate) 500
46.9.1.5 Method 5: Elimination of a Shared Atom Such as Oxygen or Sulfur 500
46.9.1.5.1 Variation 1: Expulsion of Oxygen from Oxiranes 500
46.9.1.5.2 Variation 2: Desulfurization of Thiiranes 501
46.9.2 Synthesis by 1,4-Elimination 502
46.9.2.1 Method 1: Elimination of Hydrogen and a Heteroatom 502
46.9.2.1.1 Variation 1: Elimination of a Hydrogen Halide 503
46.9.2.1.2 Variation 2: Elimination of Water or Its Equivalent 504
46.9.2.1.3 Variation 3: Elimination of Hydrogen and an Oxygen Atom Bonded to Carbon 508
46.9.2.1.4 Variation 4: Elimination of Acetic Acid 512
46.9.2.1.5 Variation 5: Elimination of Benzenesulfinic Acid 513
46.9.2.1.6 Variation 6: Elimination of Hydrogen and Oxygen from Peroxides 514
46.9.2.2 Method 2: Elimination of Two Carbon Atoms 515
46.9.2.3 Method 3: Elimination of a Carbon Fragment and a Heteroatom 516
46.9.2.4 Method 4: Elimination of Two Bromine Atoms or Two Heteroatom-Containing Groups 516
46.9.2.4.1 Variation 1: Elimination of Two Bromine Atoms 516
46.9.2.4.2 Variation 2: Elimination of Two Oxygen-Containing Groups 518
46.9.2.5 Method 5: Elimination of a Shared Heteroatom or Group 524
46.9.2.5.1 Variation 1: Elimination of Carbon Monoxide 524
46.9.2.5.2 Variation 2: Elimination of a Shared Oxygen Atom 525
46.9.2.5.3 Variation 3: Elimination of Sulfur Dioxide 525
46.9.3 Synthesis by 1,2,3,4-Elimination 526
46.9.3.1 Method 1: Elimination of Two Hydrogens and Two Heteroatoms or Heteroatom-Containing Groups 526
46.9.3.1.1 Variation 1: Double Dehydrobromination 526
46.9.3.1.2 Variation 2: Double Dehydrochlorination 529
46.9.3.1.3 Variation 3: Double Dehydroiodination 530
46.9.3.1.4 Variation 4: Double Dehydration 531
46.9.3.1.5 Variation 5: Dehydroxylation--Desulfonylation by the Loss of Acetoxy and Benzenesulfonate Functions 533
46.9.3.2 Method 2: Elimination of Four Bromine Atoms 537
46.9.3.3 Method 3: Elimination of Two Hydrogen Atoms and a Shared Oxygen Atom 537
46.9.4 Synthesis by Other Elimination Procedures 539
46.9.4.1 Method 1: Elimination of Sulfur Dioxide via Variations of the Ramberg--Bäcklund Reaction 539
46.9.4.2 Method 2: Elimination of 4-Methylpyridin-2-amine from N-{1-[4-(Dimethylamino)phenyl]pent-4-enyl}-4-methylpyridin-2-amine Using Rhodium(I) 540
46.9.4.3 Method 3: Elimination by Zeolite NaY 540
46.9.4.4 Method 4: Conversion of Propargyl Ethers into 1,3-Dienes 540
46.10 Synthesis by Reduction 546
46.10.1 Synthesis from Enynes 546
46.10.1.1 Method 1: Hydrogenation Reactions 546
46.10.1.1.1 Variation 1: Using the Lindlar Catalyst 546
46.10.1.1.2 Variation 2: Using a Poisoned Lindlar Catalyst 550
46.10.1.1.3 Variation 3: Using the Rosenmund Catalyst 551
46.10.1.1.4 Variation 4: Using a Palladium on Charcoal Catalyst 553
46.10.1.1.5 Variation 5: Using Raney Nickel Catalyst 553
46.10.1.1.6 Variation 6: Using the P-2 Nickel Catalyst 554
46.10.1.2 Method 2: Hydrometalation Reactions 555
46.10.1.2.1 Variation 1: Hydroboration 556
46.10.1.2.2 Variation 2: Hydroalumination 557
46.10.1.3 Method 3: Other Reduction Processes 560
46.10.1.3.1 Variation 1: Using Hydrazine 560
46.10.1.3.2 Variation 2: Using Metallic Zinc 560
46.10.2 Synthesis from Diynes 564
46.10.2.1 Method 1: Hydrogenation Reactions 564
46.10.2.2 Method 2: Hydrometalation Reactions 564
46.10.2.3 Method 3: Reduction Using Metallic Zinc 565
46.10.3 Synthesis from Arenes 566
46.10.3.1 Method 1: Birch Reductions 566
46.10.3.2 Method 2: Hydride Addition 567
46.11 Synthesis by Isomerization of Unconjugated Dienes, Allenes, Alkynes, and Methylenecyclopropanes 572
46.11.1 Isomerization of Unconjugated Dienes 572
46.11.1.1 Method 1: Base-Mediated Isomerization 572
46.11.1.1.1 Variation 1: Of Unfunctionalized Unconjugated Dienes 572
46.11.1.1.2 Variation 2: Of Functionalized Unconjugated Dienes 573
46.11.1.2 Method 2: Acid-Mediated Isomerization 574
46.11.1.3 Method 3: Electron-Transfer-Mediated Isomerization 575
46.11.1.4 Method 4: Metal-Mediated Isomerization 576
46.11.1.4.1 Variation 1: Palladium-Catalyzed Isomerization 576
46.11.1.4.2 Variation 2: Europium-Catalyzed Isomerization 577
46.11.1.4.3 Variation 3: Zirconocene-Mediated Skeletal Rearrangements 578
46.11.1.4.4 Variation 4: Titanium-Mediated Skeletal Rearrangement 579
46.11.1.5 Method 5: Isomerization by Sigmatropic Rearrangements 580
46.11.1.5.1 Variation 1: Thermally Induced Sigmatropic Rearrangements 580
46.11.1.5.2 Variation 2: Palladium(II)-Assisted Cope Rearrangements 582
46.11.1.6 Method 6: Isomerization by Allylic Substitution Reactions 582
46.11.1.6.1 Variation 1: Palladium(0)-Mediated Substitution of Doubly Allylic Acetates and Carbonates 582
46.11.1.6.2 Variation 2: Rearrangements Mediated by Thionyl Chloride 584
46.11.1.7 Method 7: Isomerization by Other Processes 586
46.11.2 Isomerization of Allenes 586
46.11.2.1 Method 1: Acid-Catalyzed Isomerization 586
46.11.2.2 Method 2: Metal-Catalyzed Isomerization 588
46.11.2.3 Method 3: Thermally and Photochemically Induced Isomerization 591
46.11.2.3.1 Variation 1: Thermal Rearrangements of Polyenes 591
46.11.2.3.2 Variation 2: Photochemical Rearrangements of 1,2,6-Trienes 592
46.11.2.3.3 Variation 3: [1,5]-Sigmatropic Shifts of Vinylallenes 592
46.11.3 Isomerization of Alkynes 594
46.11.3.1 Method 1: Base-Catalyzed Isomerization 594
46.11.3.2 Method 2: Metal-Catalyzed Isomerization 594
46.11.3.2.1 Variation 1: Of Aliphatic Alkynes 594
46.11.3.2.2 Variation 2: Of Ynones 597
46.11.3.3 Method 3: Thermally Induced Rearrangements 600
46.11.3.3.1 Variation 1: Cope Rearrangements of Enynes 601
46.11.3.3.2 Variation 2: Thermally Induced Rearrangements of Propargyl Vinyl Ethers 601
46.11.3.4 Method 4: Organocatalyzed Isomerization of Ynones 604
46.11.4 Isomerization of Methylenecyclopropanes 606
46.11.4.1 Method 1: Transition-Metal-Catalyzed Isomerization of Methylenecyclopropanes 606
46.11.4.1.1 Variation 1: Under Stoichiometric Conditions 606
46.11.4.1.2 Variation 2: Under Catalytic Conditions 607
46.12 Synthesis from Arenes and Polyenes 612
46.12.1 Method 1: Reductive Dearomatization of Arenes by Addition of Organolithiums Followed by Electrophilic Trapping 614
46.12.1.1 Variation 1: Of Electron-Withdrawing Carbon-Substituted Arenes with Alkyl Organolithium Species 614
46.12.1.2 Variation 2: Of Alkenyl-Substituted Arenes with Alkenyl Organolithium Species 617
46.12.1.3 Variation 3: Of Sulfone-Substituted Arenes 618
46.12.1.4 Variation 4: Of Sulfonamide-Substituted Arenes 618
46.12.1.5 Variation 5: Of Phosphinamide-Substituted Arenes 619
46.12.2 Method 2: Alkylation of ortho-Substituted Phenols 619
46.12.2.1 Variation 1: Of Alkali Metal Phenolate Salts 619
46.12.2.2 Variation 2: Of Arenoxasulfonium Ylides by [2,3]-Sigmatropic Rearrangement 622
46.12.3 Method 3: Alkenylation of ortho-Alkyl-Substituted Phenols 623
46.12.4 Method 4: Arylation of ortho-Alkyl-Substituted Phenols 624
46.12.5 Method 5: Alkynylation of ortho-Alkyl-Substituted Phenols 625
46.12.6 Method 6: Hydroxylation of ortho-Alkyl-Substituted Phenols (Synthesis of o-Quinols) 626
46.12.7 Method 7: Alkoxylation of ortho-Alkyl-Substituted Phenols (Synthesis of o-Quinol Ethers) 631
46.12.7.1 Variation 1: Of 2-(Hydroxymethyl)phenols To Give Spiroepoxycyclohexa-2,4-dien-1-ones 631
46.12.7.2 Variation 2: To Give 6-Alkoxy-6-alkylcyclohexa-2,4-dien-1-ones 632
46.12.8 Method 8: Acyloxylation of ortho-Alkyl-Substituted Phenols (Synthesis of o-Quinol Acetates) 632
46.12.9 Method 9: Addition of Oximes to ortho-Alkyl-Substituted Phenols (Synthesis of o-Quinol Oximes) 635
46.12.10 Method 10: Alkoxylation of ortho-Alkoxy-Substituted Phenols (Synthesis of o-Quinone Acetals) 636
46.12.11 Method 11: Acyloxylation of ortho-Alkoxy-Substituted Phenols (Synthesis of o-Quinone Alkoxy Acetates) 638
46.12.12 Method 12: Diacyloxylation of Phenols (Synthesis of o-Quinone Diacetates) 639
46.12.13 Method 13: Amination of ortho-Alkyl-Substituted Phenol Derivatives 640
46.12.14 Method 14: Alkylation of ortho-Alkyl-Substituted Aniline Derivatives 642
46.12.14.1 Variation 1: By Hetero-Claisen Rearrangement of N-Arylhydroxylamine Derivatives 642
46.12.14.2 Variation 2: By Imino-Diels--Alder Reaction 642
46.12.15 Method 15: Alkenylation of ortho-Alkyl-Substituted Anilines 643
46.12.16 Method 16: Hydroxylation of ortho-Alkyl-Substituted Anilines (Synthesis of o-Quinol Imines) 643
46.12.17 Method 17: Acyloxylation of ortho-Alkyl-Substituted Aniline Derivatives (Synthesis of o-Quinol Imide Acetates) 644
46.12.17.1 Variation 1: By Wessely Oxidation 644
46.12.17.2 Variation 2: By Rearrangement of N-Arylhydroxylamine Derivatives 644
46.12.18 Method 18: Amidation of ortho-Alkyl-Substituted Aniline Derivatives (Synthesis of o-Quinol Imide Amides) 645
46.12.19 Method 19: cis-Cyclohexanediols by Enzymatic Dihydroxylation of Arenes 646
46.12.20 Method 20: Alkylations of Polyenes 649
46.12.20.1 Variation 1: Cyclopropanation 649
46.12.20.2 Variation 2: Hydrozirconation 649
46.12.20.3 Variation 3: Nickel-Catalyzed Polyene--Aldehyde Reductive Coupling Reaction with Triethylborane 650
46.12.20.4 Variation 4: Cobalt-Catalyzed Polyene--Alkyl Halide--[(Trimethylsilyl)methyl]magnesium Chloride Coupling Reaction 650
46.12.21 Method 21: Epoxidation of Polyenes 651
46.12.21.1 Variation 1: Juliá--Colonna Asymmetric Epoxidation 651
46.12.21.2 Variation 2: Chiral Manganese(III)--salen Catalyzed Epoxidation 651
46.12.21.3 Variation 3: Chiral-Dioxirane-Catalyzed Epoxidation 652
46.12.22 Method 22: Dihydroxylation of Polyenes 653
46.13 Synthesis via Metal Complexes of Dienes 660
46.13.1 Release of 1,3-Dienes by Demetalation of Tricarbonyl(1,3-diene)iron Complexes 660
46.13.1.1 Method 1: Oxidative Demetalation 660
46.13.1.2 Method 2: Ligand Exchange 660
46.13.2 Isomerization of 1,4-Dienes 662
46.13.2.1 Method 1: Synthesis via Intermediate Tricarbonyl(1,3-diene)iron Complexes 662
46.13.3 Acylation of Tricarbonyl(1,3-diene)iron Complexes 663
46.13.3.1 Method 1: Intermolecular Acylation 663
46.13.3.2 Method 2: Intramolecular Acylation 665
46.13.4 Palladium-Catalyzed Coupling of Substituted (1,3-Diene)iron Complexes 665
46.13.5 Cyclization of (1,3-Diene)iron Complexes with Pendent Double Bonds 665
46.13.6 Oxidative Cyclization of (1,3-Diene)metal Complexes 666
46.13.6.1 Method 1: Oxidative Cyclization of Tricarbonyl(1,3-diene)iron Complexes 667
46.13.6.2 Method 2: Oxidative Cyclization of Cyclohexa-1,3-diene(cyclopentadienyl)cobalt Complexes 668
46.13.7 Modification at the Periphery of Tricarbonyl(.4-1,3-diene)iron Complexes 669
46.13.7.1 Method 1: Nucleophilic Addition to Carbonyl and Heterocarbonyl Functions Adjacent to Tricarbonyl(.4-1,3-diene)iron Complexes 669
46.13.7.1.1 Variation 1: Addition to Aldehydes 669
46.13.7.1.2 Variation 2: Addition to Imines 670
46.13.7.1.3 Variation 3: Addition to Ketones 671
46.13.7.1.4 Variation 4: Addition to Carboxylic Acid Derivatives 673
46.13.7.2 Method 2: Reactions at Groups Other Than Carbonyl or Heterocarbonyl Adjacent to Tricarbonyl(.4-1,3-diene)iron Complexes 674
46.13.7.2.1 Variation 1: Reaction of Electrophiles with Tricarbonyl(dienoate)iron or Tricarbonyl(dienone)iron Complexes 674
46.13.7.2.2 Variation 2: Addition to Tricarbonyl(.4-triene)iron Complexes 675
46.13.7.2.3 Variation 3: Substitution of Tricarbonyl(2,4-dien-1-ol)iron Derivatives 675
46.13.8 Reaction of (.5-Dienyl)metal Complexes with Nucleophiles 677
46.13.8.1 Method 1: Reaction of Cyclic (.5-Dienyl)iron Complexes with Nucleophiles 677
46.13.8.2 Method 2: Reaction of Acyclic (.5-Dienyl)iron Complexes with Nucleophiles 680
46.13.8.3 Method 3: Reaction of Cyclic (.5-Dienyl)manganese Complexes with Nucleophiles 681
46.13.9 Reactions of (p-Allyl)tricarbonyliron Lactone Complexes 683
46.13.9.1 Method 1: Modification at the Periphery of (p-Allyl)tricarbonyliron Lactone Complexes 683
46.13.10 Cyclopentadienones by Iron-Mediated [2 + 2 + 1] Cycloaddition 684
46.13.10.1 Method 1: Reaction of Alkynes with Pentacarbonyliron 684
Keyword Index 692
Author Index 734
Abbreviations 762
Erscheint lt. Verlag | 11.12.2013 |
---|---|
Reihe/Serie | Science of Synthesis |
Verlagsort | Stuttgart |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie ► Organische Chemie |
Technik | |
Schlagworte | 1 • 3-Dienes • 3- dienes • Chemie • Chemische Synthese • chemistry of organic compound • chemistry organic reaction • chemistry reference work • C HEMISTRY REFERENCE WORK • chemistry synthetic methods • compound functional group • compound organic synthesis • compounds with all-carbon functions • Mechanism • methods in organic synthesis • methods peptide synthesis • Organic Chemistry • organic chemistry functional groups • organic chemistry reactions • organic chemistry review • organic chemistry synthesis • ORGANIC CHEM ISTRY SYNTHESIS • organic method • organic reaction • organic reaction mechanism • ORGANI C REACTION MECHANISM • Organic Syntheses • organic synthesis • organic synthesis reference work • Organisch-chemische Synthese • Organische Chemie • Peptide synthesis • Practical • practical organic chemistry • Reactions • reference work • Review • review organic synthesis • review synthetic methods • REVIEW SYNTHE TIC METHODS • Synthese • Synthetic chemistry • Synthetic Methods • Synthetic Organic Chemistry • synthetic transformation |
ISBN-10 | 3-13-172261-4 / 3131722614 |
ISBN-13 | 978-3-13-172261-4 / 9783131722614 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 11,9 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich