Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Science of Synthesis: Houben-Weyl Methods of Molecular Transformations Vol. 46 (eBook)

1,3-Dienes
eBook Download: PDF
2013 | 1. Auflage
744 Seiten
Thieme (Verlag)
978-3-13-172261-4 (ISBN)

Lese- und Medienproben

Science of Synthesis: Houben-Weyl Methods of Molecular Transformations  Vol. 46 -
Systemvoraussetzungen
2.589,99 inkl. MwSt
(CHF 2529,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
<!DOCTYPE HTML PUBLIC '-//W3C//DTD HTML 4.0 Transitional//EN'> <HTML><HEAD> <META content='text/html; charset=unicode' http-equiv=Content-Type> <META name=GENERATOR content='MSHTML 8.00.7600.16588'></HEAD> <BODY> <P><EM>Science of Synthesis: Houben-Weyl Methods of Molecular Transformations</EM> is the entirely new edition of the acclaimed reference series Houben-Weyl, the standard synthetic chemistry resource since 1909. This new edition is published in English and will comprise 48 volumes published between the years 2000 and 2008.</P> <P><EM>Science of Synthesis</EM> is a quality reference work developed by a highly esteemed editorial board to provide a comprehensive and critical selection of reliable organic and organometallic synthetic methods. This unique resource is designed to be the first point of reference when searching for a synthesis strategy.</P> <UL><LI>Contains the expertise of presently 400 leading chemists worldwide <LI>Critically evaluates the preparative applicability and significance of the synthetic methods <LI>Discusses relevant background information and provides detailed experimental procedures</LI></UL> <P>For full information on the <EM>Science of Synthesis</EM> series, visit the <A href='http://www.science-of-synthesis.com/'>Science of Synthesis Homepage</A></P></BODY></HTML>

Science of Synthesis – Volume 46: 1,3-Dienes 1
Title page 3
Imprint 5
Preface 6
Overview 8
Table of Contents 10
Introduction 24
46.1 Synthesis Using the Wittig and Related Phosphorus-, Silicon-, or Sulfur-Based Reactions 46
46.1.1 The Wittig Reaction 47
46.1.1.1 Method 1: Synthesis from Phosphorus Ylides and Enones or Enals 47
46.1.1.1.1 Variation 1: From Stabilized Ylides 48
46.1.1.1.2 Variation 2: From Nonstabilized Ylides 50
46.1.1.2 Method 2: Synthesis from Allyl Phosphorus Ylides and Carbonyl Compounds 53
46.1.1.3 Method 3: Synthesis by Tandem Oxidation--Wittig Reaction 57
46.1.1.3.1 Variation 1: Simultaneous Diene Formation 58
46.1.1.3.2 Variation 2: Sequential Diene Formation 58
46.1.2 The Horner--Wittig Reaction 60
46.1.2.1 Method 1: Synthesis from Phosphine Oxides and Enals 61
46.1.2.2 Method 2: Synthesis from Alkenylphosphine Oxides and Aldehydes or Ketones 61
46.1.3 The Horner--Wadsworth--Emmons Reaction 62
46.1.3.1 Method 1: Synthesis from Phosphonates and Enones or Enals 63
46.1.3.1.1 Variation 1: The Ando Method 65
46.1.3.1.2 Variation 2: The Still--Gennari Modification 66
46.1.3.2 Method 2: Synthesis from Alkenylphosphonates and Carbonyl Compounds 67
46.1.3.2.1 Variation 1: The Still--Gennari Modification 69
46.1.4 The Peterson Reaction 69
46.1.4.1 Method 1: Synthesis from a,ß-Unsaturated Carbonyl Compounds and Alkylsilanes 70
46.1.4.2 Method 2: Synthesis from Carbonyl Compounds and Allylsilanes 72
46.1.4.3 Method 3: The Vinylogous Peterson Elimination 76
46.1.5 The Julia Reaction and Its Variations 77
46.1.5.1 Method 1: Synthesis from a,ß-Unsaturated Carbonyl Compounds and Alkyl Sulfones 78
46.1.5.2 Method 2: Synthesis from Carbonyl Compounds and Allyl Sulfones 80
46.1.5.3 Method 3: The Keck Variation 82
46.2 Synthesis by Alkylidenation with Metal--Carbene Complexes and Related Reagents 86
46.2.1 Methylenation 86
46.2.1.1 Method 1: Synthesis Using Titanium-Based Reagents 86
46.2.1.1.1 Variation 1: Using the Tebbe Reagent 86
46.2.1.1.2 Variation 2: Using Bis(.5-cyclopentadienyl)(dihalozinc)(µ-methylene)titanium 91
46.2.1.1.3 Variation 3: Using Bis(.5-cyclopentadienyl)dimethyltitanium(IV) (The Petasis Reagent) 92
46.2.1.1.4 Variation 4: Using Titanacyclobutenes 95
46.2.1.2 Method 2: Synthesis Using Zinc-Based Reagents 96
46.2.1.3 Method 3: Synthesis Using Miscellaneous Reagents 100
46.2.2 Halomethylenation and Related Reactions 102
46.2.2.1 Method 1: Synthesis Using Titanium-Based Reagents 103
46.2.2.2 Method 2: Synthesis Using Zinc-Based Reagents 104
46.2.2.3 Method 3: Synthesis Using Chromium-Based Reagents 105
46.2.3 Other Alkylidenation Reactions 110
46.2.3.1 Method 1: Synthesis Using Titanium-Based Reagents 110
46.2.3.2 Method 2: Synthesis Using Zinc-Based Reagents 113
46.2.3.3 Method 3: Synthesis Using Chromium-Based Reagents 114
46.2.3.4 Method 4: Synthesis Using Miscellaneous Reagents 115
46.3 Synthesis by Alkene Metathesis 120
46.3.1 Method 1: Ring-Closing Metathesis of Enynes 125
46.3.1.1 Variation 1: Using Grubbs' Catalysts 125
46.3.1.2 Variation 2: Polycyclization Using Grubbs' Catalysts 130
46.3.1.3 Variation 3: Using the Hoveyda--Blechert Catalyst 135
46.3.1.4 Variation 4: Polycyclization Using the Hoveyda--Blechert Catalyst 137
46.3.1.5 Variation 5: Using the Schrock Catalyst 138
46.3.2 Method 2: Ring-Closing Metathesis of Alkenes with Conjugated Dienes 141
46.3.3 Method 3: Cross Metathesis of Alkynes with Alkenes 144
46.3.3.1 Variation 1: Metathesis of Alkynes with Ethene 144
46.3.3.2 Variation 2: Metathesis of Terminal Alkynes with Other Acyclic Alkenes 148
46.3.3.3 Variation 3: Metathesis of Internal Alkynes with Acyclic Alkenes 152
46.3.3.4 Variation 4: Ethene-Assisted Metathesis 153
46.3.3.5 Variation 5: Metathesis of Alkynes with Cycloalkenes 154
46.3.4 Method 4: Cross Metathesis of Alkenes with Conjugated Dienes 158
46.3.5 Method 5: Cross Metathesis of Alkenes Followed by Elimination 163
46.3.6 Method 6: Ring-Rearrangement Metathesis 164
46.4 Synthesis by Aldol and Related Condensation Reactions 170
46.4.1 Synthesis of 1,3-Dienes with an Electron-Withdrawing Group at C1 171
46.4.1.1 Method 1: Formation of the a,ß-Alkene 171
46.4.1.1.1 Variation 1: Under Basic Conditions with Thermodynamic Control 172
46.4.1.1.2 Variation 2: Under Kinetic Conditions with Subsequent Elimination 173
46.4.1.1.3 Variation 3: Under Lewis Acidic Conditions 174
46.4.1.1.4 Variation 4: Other Approaches 176
46.4.1.2 Method 2: Formation of the .,d-Alkene 176
46.4.1.2.1 Variation 1: Driven by Extended Conjugation 177
46.4.1.2.2 Variation 2: Lactone Formation 177
46.4.1.2.3 Variation 3: Other Reactions 179
46.4.2 Synthesis of 1,3-Dienes with an Electron-Withdrawing Group at C2 181
46.4.2.1 Method 1: Formation of the a,ß-Alkene 181
46.4.2.1.1 Variation 1: Single-Step Reactions 182
46.4.2.1.2 Variation 2: Multistep Reactions 182
46.4.2.1.3 Variation 3: Other Strategies 183
46.4.3 Synthesis of 1,3-Dienes with Two Electron-Withdrawing Groups at C1 183
46.4.3.1 Method 1: Formation of the a,ß-Alkene 184
46.4.3.1.1 Variation 1: Under Standard Basic Conditions 184
46.4.3.1.2 Variation 2: Using Alternative Promoters 185
46.4.3.1.3 Variation 3: From Non-Ester Substrates 185
46.4.3.2 Method 2: Formation of the .,d-Alkene 186
46.4.4 Synthesis of 1,3-Dienes with Electron-Withdrawing Groups at C1 and C3 187
46.4.4.1 Method 1: Knoevenagel and Related Condensations 188
46.4.5 Synthesis of 1,3-Dienes with Electron-Withdrawing Groups at C2 and C3 189
46.4.5.1 Method 1: Single Stobbe Reaction 189
46.4.5.2 Method 2: Double Stobbe Reaction 190
46.5 Synthesis by Metal-Mediated C--C Bond Forming Reactions of Alkynes, Diynes, and Enynes 196
46.5.1 Acyclic 1,3-Dienes 196
46.5.1.1 Method 1: Nickel-Catalyzed Aldehyde--Alkyne and Aldehyde--Enyne Coupling 196
46.5.1.1.1 Variation 1: Nickel-Catalyzed Aldehyde--Alkyne Coupling 196
46.5.1.1.2 Variation 2: Nickel-Catalyzed Aldehyde--Enyne Coupling 197
46.5.1.2 Method 2: Coupling of Alkynes 198
46.5.1.2.1 Variation 1: Titanium-Mediated Carbometalation of Internal Alkynes 199
46.5.1.2.2 Variation 2: Zirconium-Mediated Carbometalation of Alkynes 200
46.5.1.2.3 Variation 3: Ruthenium-Catalyzed Dimerization of Propargyl Alcohols 203
46.5.1.3 Method 3: 2:1 Co-oligomerization of Alkynes and Alkenes 204
46.5.1.3.1 Variation 1: Cobalt-Mediated C--H Activation 204
46.5.1.3.2 Variation 2: Nickel-Mediated C--H Activation 205
46.5.2 Endocyclic 1,3-Dienes 206
46.5.2.1 Method 1: Synthesis via Zirconacyclopentadienes 206
46.5.2.2 Method 2: Six-Membered Rings by [2 + 2 + 2] Cycloaddition 208
46.5.2.2.1 Variation 1: Titanium-Catalyzed Cycloaddition 209
46.5.2.2.2 Variation 2: Zirconium-Mediated Cycloaddition 209
46.5.2.2.3 Variation 3: Ruthenium-Catalyzed Cycloaddition 210
46.5.2.2.4 Variation 4: Cobalt-Mediated Cycloaddition 213
46.5.2.2.5 Variation 5: Rhodium-Catalyzed Cycloaddition 220
46.5.2.2.6 Variation 6: Iridium-Catalyzed Cycloaddition 224
46.5.2.2.7 Variation 7: Nickel-Catalyzed Cycloaddition 226
46.5.2.3 Method 3: Six-Membered Rings by Cycloisomerization of 1,5-Enynes 228
46.5.2.4 Method 4: Seven-Membered Rings by Cycloaddition or Cycloisomerization of Diynes 229
46.5.2.5 Method 5: Codimerization Reaction between 1,3-Dienes and Alkynes 230
46.5.2.6 Method 6: Cobalt-Mediated Syntheses of Alkaloids and Steroids 230
46.5.3 1,3-Dienes Having Two Exocyclic Double Bonds 233
46.5.3.1 Method 1: Cyclization of Diynes 233
46.5.3.1.1 Variation 1: Titanium-Promoted Cyclization of Diynes 233
46.5.3.1.2 Variation 2: Zirconacene-Derivative-Promoted Cyclization of Diynes 234
46.5.3.1.3 Variation 3: Nickel-Catalyzed Cyclization of Diynes 235
46.5.3.2 Method 2: Cyclization of Enynes 236
46.5.3.2.1 Variation 1: Palladium-Catalyzed Cycloisomerization of Enynes 237
46.5.3.2.2 Variation 2: Ruthenium-Catalyzed Cycloisomerization of Enynes 238
46.5.3.2.3 Variation 3: Iridium(I)-Catalyzed Cycloisomerization of Enynes 239
46.5.3.2.4 Variation 4: Cobalt(I)-Mediated Cycloisomerization of 1,n-Enynes 240
46.5.3.3 Method 3: Cyclization of Allenynes 241
46.5.4 Conjugated Vinylic Cycloalkenes 242
46.5.4.1 Method 1: Cycloisomerization of 1,6-Enynes 242
46.5.4.1.1 Variation 1: Palladium-Catalyzed Cycloisomerization To Give Vinylcyclopentenes 242
46.5.4.1.2 Variation 2: Ruthenium-Catalyzed Cycloisomerization To Give Vinylcycloalkenes 243
46.5.4.1.3 Variation 3: Platinum- and Gold-Catalyzed Cycloisomerization To Give Vinylcycloalkenes 244
46.5.4.1.4 Variation 4: Iridium-Catalyzed Cycloisomerization To Give Vinylcycloalkenes 246
46.5.4.2 Method 2: Cycloisomerization of Allenynes 247
46.5.4.2.1 Variation 1: Platinum-Catalyzed Cycloisomerization To Give Vinylcycloalkenes 247
46.5.4.2.2 Variation 2: Gold- and Platinum-Catalyzed Cycloisomerization To Give Cross-Conjugated Trienes 248
46.5.4.2.3 Variation 3: Rhodium-Catalyzed Isomerization To Give Cross-Conjugated Trienes 248
46.5.4.2.4 Variation 4: Titanium(II)-Mediated Cyclization To Give Cross-Conjugated Trienes 249
46.5.4.2.5 Variation 5: Cobalt(I)-Mediated Cyclization To Give Cross-Conjugated Trienes 250
46.5.5 1,3-Dienes Having Endocyclic and Exocyclic Double Bonds 250
46.5.5.1 Method 1: Cycloisomerization of 1,6- and 1,7-Enynes 251
46.5.5.1.1 Variation 1: Palladium-Catalyzed Cycloisomerization 251
46.5.5.1.2 Variation 2: Gold-Catalyzed Cycloisomerization 251
46.5.5.1.3 Variation 3: Rhodium-Catalyzed Cycloisomerization 253
46.5.5.1.4 Variation 4: Ruthenium-Catalyzed Cycloisomerization 254
46.5.5.2 Method 2: Cycloisomerization of Allenynes 254
46.5.6 s-trans-Heteroannular 1,3-Dienes 255
46.5.6.1 Method 1: Cycloisomerization of Dienynes 255
46.5.6.2 Method 2: Cycloisomerization of Allenynes 255
46.6 Synthesis by Metal-Mediated Coupling Reactions 262
46.6.1 Method 1: Stoichiometric Synthesis of 1,3-Dienes by Metal-Mediated Coupling Reactions via Migratory Insertion 267
46.6.1.1 Variation 1: 1,4-Disubstituted E,E-1,3-Dienes by [2C + 2C] Alkenyl--Alkenyl Coupling via Organoboron Migratory Insertion Reactions 268
46.6.1.2 Variation 2: 1,4-Disubstituted E,Z-1,3-Dienes by [2C + 2C] Alkynyl--Alkenyl Coupling via Organoboron Migratory Insertion Reactions 269
46.6.1.3 Variation 3: 1,4-Disubstituted Z,Z-1,3-Dienes by [2C + 2C] Alkynyl--Alkynyl Coupling via Boron- or Zirconium-Mediated Migratory Insertion 270
46.6.1.4 Variation 4: Other Organozirconium Migratory Insertion Reactions for the Synthesis of 1,3-Dienes 271
46.6.2 Method 2: Stoichiometric Synthesis of 1,3-Dienes by Metal-Mediated [2C + 2C] Coupling via Carbometalation 272
46.6.2.1 Variation 1: Synthesis of 1,3-Dienes by Controlled Alkyne Dimerization via syn-Carbometalation 274
46.6.2.2 Variation 2: Chelation-Guided anti-Carbometalation with Alkenyl- and Alkynylmetals 275
46.6.2.3 Variation 3: Zirconium-Promoted Ene--Yne Coupling and Alkyne Dimerization 275
46.6.2.4 Variation 4: Titanium-Promoted Ene--Yne Coupling and Alkyne Dimerization 278
46.6.3 Method 3: Synthesis of 1,3-Dienes by Palladium-Catalyzed Cross-Coupling Reactions 279
46.6.3.1 Variation 1: 1,3-Dienes Containing the Parent Vinyl and/or 1-Monosubstituted Vinyl Groups 
289 
46.6.3.2 Variation 2: 1,4-Disubstituted 1,3-Dienes 294
46.6.3.3 Variation 3: Trisubstituted 1,3-Dienes Excluding Those Containing a Vinyl or Vinylidene Group 298
46.6.3.4 Variation 4: Tetrasubstituted 1,3-Dienes Excluding Those Containing a Fully Substituted Alkenyl Group 308
46.6.3.5 Variation 5: Tetra-, Penta-, and Hexasubstituted 1,3-Dienes Containing One or Two Fully Substituted Alkenyl Groups Excluding 1,1,2,3-Tetrasubstituted 1,3-Dienes 310
46.6.4 Method 4: 1,3-Dienes through Modification of 4C Compounds 313
46.6.4.1 Variation 1: 1,3-Dienes via Heterofunctionalized 1,3-Dienes 313
46.6.4.2 Variation 2: 1,3-Dienes via 1,3-Enynes and 1,3-Diynes 323
46.6.5 Method 5: Synthesis of 1,3-Dienes by Catalytic Carbometalation and Oxymetalation Reactions 331
46.6.5.1 Variation 1: 1,3-Dienes via the Heck Reaction 331
46.6.5.2 Variation 2: Other Catalytic Carbopalladation Routes to 1,3-Dienes 338
46.6.5.3 Variation 3: 1,3-Dienes via Oxymetalation Reactions 349
46.6.6 Method 6: Synthesis of 1,3-Diene-Containing Oligoenes and Oligoenynes of Natural Origin and Related Compounds 355
46.7 Synthesis by Cycloaddition and Electrocyclic Reactions 376
46.7.1 Method 1: Thermal Electrocyclic Ring-Opening Reactions of Cyclobutenes 376
46.7.1.1 Variation 1: Acyclic 1,3-Dienes from 3,4-Unsubstituted Cyclobutenes 377
46.7.1.2 Variation 2: Acyclic 1,3-Dienes from 3-Substituted Cyclobutenes 379
46.7.1.3 Variation 3: Acyclic 1,3-Dienes from Multisubstituted Cyclobutenes 382
46.7.1.4 Variation 4: Cycloalka-1,3-dienes from 3,4-Fused Cyclobutenes (Ring Expansion) 387
46.7.1.5 Variation 5: 1,3-Dienes from 1,2-Fused Cyclobutenes 391
46.7.1.6 Variation 6: 1,3-Dienes from 1,4-Fused Cyclobutenes 392
46.7.2 Method 2: Photochemical Reactions of Cyclobutenes 393
46.7.3 Method 3: Thermal Six-Electron Electrocyclizations To Give Cyclohexa-1,3-dienes 394
46.7.3.1 Variation 1: Cyclohexa-1,3-dienes from Acyclic 1,3,5-Trienes 397
46.7.3.2 Variation 2: 1,6-Fused Cyclohexa-1,3-dienes from 1,2-Fused 1,3,5-Trienes 400
46.7.3.3 Variation 3: 1,2-Fused Cyclohexa-1,3-dienes from 2,3-Fused 1,3,5-Trienes 403
46.7.3.4 Variation 4: 2,3-Ring-Fused Cyclohexa-1,3-dienes from 3,4-Ring-Fused 1,3,5-Trienes 405
46.7.3.5 Variation 5: 5,6-Fused Cyclohexa-1,3-dienes from Cycloalka-1,3,5-trienes 406
46.7.4 Method 4: Photochemical Six-Electron Electrocyclizations 408
46.7.5 Method 5: Unsaturated Carbocycles via a Combination of Thermally Induced Electrocyclizations 409
46.7.6 Method 6: [6 + 4] Cycloadditions between Buta-1,3-dienes and Hexa-1,3,5-trienes 412
46.7.6.1 Variation 1: [6 + 4] Cycloadditions of Tropones 412
46.7.6.2 Variation 2: [6 + 4] Cycloadditions of Fulvenes 417
46.8 Synthesis by Extrusion 424
46.8.1 Extrusion of Alkenes 424
46.8.1.1 Method 1: Thermal Cracking of Cyclohexene 424
46.8.1.2 Method 2: Extrusion of Cyclopentadiene 425
46.8.1.2.1 Variation 1: Cracking of Dicyclopentadiene 425
46.8.1.2.2 Variation 2: Cyclopentadiene as a Protecting Group 425
46.8.1.3 Method 3: Extrusion of Maleic Anhydride 426
46.8.2 Extrusion of Carbon Dioxide 427
46.8.2.1 Method 1: Carbon Dioxide Extrusion from Six-Membered Lactones 427
46.8.2.2 Method 2: Carbon Dioxide Extrusion with In Situ Trapping of the Diene 428
46.8.2.3 Method 3: Carbon Dioxide Extrusion from Vinyl-Substituted ß-Lactones 429
46.8.2.3.1 Variation 1: Decarboxylative Extrusion from ß-Lactones 429
46.8.2.3.2 Variation 2: Tandem Lactone Formation--Carbon Dioxide Extrusion 430
46.8.3 Extrusion of Carbon Monoxide 431
46.8.3.1 Method 1: Carbon Monoxide Extrusion from Monocyclic Cyclopent-3-en-1-ones 431
46.8.3.2 Method 2: Extrusion of a Bridging Carbon Monoxide from Strained Rings 432
46.8.3.3 Method 3: Carbon Monoxide Extrusion with In Situ Trapping of the Diene 433
46.8.3.4 Method 4: Carbon Monoxide Extrusion To Afford Cyclooctatetraenes 434
46.8.3.5 Method 5: Carbon Monoxide Extrusion from ß-Allenyl Aldehydes 434
46.8.4 Extrusion of Sulfur Dioxide 435
46.8.4.1 Method 1: Thermal Extrusion of Sulfur Dioxide from 2,5-Dihydrothiophene 1,1-Dioxides 435
46.8.4.1.1 Variation 1: Preparation of 1,4-Disubstituted 1,3-Dienes via Thermolysis 436
46.8.4.1.2 Variation 2: Preparation of Terminal 1,3-Dienes via Thermolysis 438
46.8.4.1.3 Variation 3: Preparation of 2,3-Disubstituted 1,3-Dienes via Thermolysis 439
46.8.4.1.4 Variation 4: Preparation of Other Substitution Patterns via Thermolysis 441
46.8.4.2 Method 2: Thermolysis Followed by In Situ Trapping 441
46.8.4.2.1 Variation 1: Intermolecular Diels--Alder Trapping of the Diene 442
46.8.4.2.2 Variation 2: Intramolecular Diels--Alder Trapping of the Diene 443
46.8.4.2.3 Variation 3: Other In Situ Trapping Reactions 444
46.8.4.3 Method 3: Extrusion from Cyclic Sulfones in the Presence of Lithium Aluminum Hydride 445
46.8.4.4 Method 4: Reaction of Cyclic Sulfones with Ultrasonically Dispersed Potassium 446
46.8.4.4.1 Variation 1: Using Standard Conditions 446
46.8.4.4.2 Variation 2: In the Presence of a Proton Source 447
46.8.4.5 Method 5: Tandem Retro-Diels--Alder/Sulfur Dioxide Extrusion from Cyclic Sulfones 448
46.8.4.6 Method 6: Photochemical Extrusion of Sulfur Dioxide from 2,5-Dihydrothiophene 1,1-Dioxides 449
46.8.4.7 Method 7: Extrusion from In Situ Generated Thiirane 1,1-Dioxides (The Ramberg--Bäcklund Reaction) 450
46.8.4.7.1 Variation 1: Hexa-1,3,5-trienes from Diallylic Sulfones 450
46.8.4.7.2 Variation 2: Terminal 1,3-Dienes via The Vinylogous Ramberg--Bäcklund Reaction 451
46.8.4.7.3 Variation 3: Application of the Ramberg--Bäcklund Reaction to an Iterative Ring-Growing Procedure 452
46.8.4.8 Method 8: Base-Induced Isomerization and Thermal Elimination of 2,3-Dihydrothiophene 1,1-Dioxides 453
46.8.4.9 Method 9: Extrusion from Cyclic Sulfinate Esters 454
46.8.4.10 Method 10: 1,3,5-Trienes from 2,7-Dihydrothiepin 1,1-Dioxides 455
46.8.4.10.1 Variation 1: Synthesis of Open-Chain 1,3,5-Trienes 455
46.8.4.10.2 Variation 2: Synthesis of Cyclodecatetraenes 456
46.8.4.10.3 Variation 3: Synthesis of Cyclooctatetraenes 456
46.8.5 Extrusion of Nitrogen 457
46.8.5.1 Method 1: Dienes from 2,5-Dihydro-1H-pyrroles 458
46.8.5.2 Method 2: Extrusion of Nitrogen from Hydrazine-Derived Azo Compounds 458
46.8.5.3 Method 3: Extrusion of Nitrogen from Pyridazine-Derived Azo Compounds 459
46.8.6 Extrusion of 4-Phenyl-3H-1,2,4-triazole-3,5(4H)-diones and Related Molecules 459
46.8.6.1 Method 1: Extrusion of 4-Phenyl-3H-1,2,4-triazole-3,5(4H)-dione by Thermolysis 460
46.8.6.2 Method 2: Extrusion of 4-Phenyl-3H-1,2,4-triazole-3,5(4H)-dione in the Presence of a Reducing Agent 462
46.8.6.3 Method 3: Extrusion from Related Diazines 464
46.9 Synthesis by Elimination 468
46.9.1 Synthesis by 1,2-Elimination 468
46.9.1.1 Method 1: Elimination of Hydrogen and a Heteroatom 469
46.9.1.1.1 Variation 1: Dehydrohalogenation 469
46.9.1.1.2 Variation 2: Dehydration 471
46.9.1.1.3 Variation 3: Loss of Acetic Acid or Trifluoroacetic Acid 480
46.9.1.1.4 Variation 4: Loss of a Sulfonic Acid 483
46.9.1.1.5 Variation 5: Loss of Hydrogen and an Alkoxy or Aryloxy Group 486
46.9.1.1.6 Variation 6: Loss of Hydrogen and an Arylsulfinyl Group 487
46.9.1.1.7 Variation 7: Loss of Hydrogen and a Selenium-Containing Group 488
46.9.1.1.8 Variation 8: Loss of Hydrogen and a Nitrogen-Containing Group 491
46.9.1.2 Method 2: Elimination of a Silicon-Containing Group and a Heteroatom 491
46.9.1.2.1 Variation 1: Loss of Silicon- and Oxygen-Bearing Groups 492
46.9.1.2.2 Variation 2: Loss of Silicon- and Nitrogen-Containing Groups 494
46.9.1.3 Method 3: Elimination of a Carbon Fragment and a Heteroatom-Containing Group 495
46.9.1.3.1 Variation 1: Loss of Acetic Acid and Carbon Dioxide 495
46.9.1.3.2 Variation 2: Grob Fragmentation 496
46.9.1.4 Method 4: Elimination of Two Heteroatoms or Heteroatom-Containing Groups 498
46.9.1.4.1 Variation 1: Loss of an Oxygen-Containing Group and a Halogen Atom 498
46.9.1.4.2 Variation 2: Dehalogenation 499
46.9.1.4.3 Variation 3: Loss of Nitrate and Acetate (or Methanesulfonate) 500
46.9.1.5 Method 5: Elimination of a Shared Atom Such as Oxygen or Sulfur 500
46.9.1.5.1 Variation 1: Expulsion of Oxygen from Oxiranes 500
46.9.1.5.2 Variation 2: Desulfurization of Thiiranes 501
46.9.2 Synthesis by 1,4-Elimination 502
46.9.2.1 Method 1: Elimination of Hydrogen and a Heteroatom 502
46.9.2.1.1 Variation 1: Elimination of a Hydrogen Halide 503
46.9.2.1.2 Variation 2: Elimination of Water or Its Equivalent 504
46.9.2.1.3 Variation 3: Elimination of Hydrogen and an Oxygen Atom Bonded to Carbon 508
46.9.2.1.4 Variation 4: Elimination of Acetic Acid 512
46.9.2.1.5 Variation 5: Elimination of Benzenesulfinic Acid 513
46.9.2.1.6 Variation 6: Elimination of Hydrogen and Oxygen from Peroxides 514
46.9.2.2 Method 2: Elimination of Two Carbon Atoms 515
46.9.2.3 Method 3: Elimination of a Carbon Fragment and a Heteroatom 516
46.9.2.4 Method 4: Elimination of Two Bromine Atoms or Two Heteroatom-Containing Groups 516
46.9.2.4.1 Variation 1: Elimination of Two Bromine Atoms 516
46.9.2.4.2 Variation 2: Elimination of Two Oxygen-Containing Groups 518
46.9.2.5 Method 5: Elimination of a Shared Heteroatom or Group 524
46.9.2.5.1 Variation 1: Elimination of Carbon Monoxide 524
46.9.2.5.2 Variation 2: Elimination of a Shared Oxygen Atom 525
46.9.2.5.3 Variation 3: Elimination of Sulfur Dioxide 525
46.9.3 Synthesis by 1,2,3,4-Elimination 526
46.9.3.1 Method 1: Elimination of Two Hydrogens and Two Heteroatoms or Heteroatom-Containing Groups 526
46.9.3.1.1 Variation 1: Double Dehydrobromination 526
46.9.3.1.2 Variation 2: Double Dehydrochlorination 529
46.9.3.1.3 Variation 3: Double Dehydroiodination 530
46.9.3.1.4 Variation 4: Double Dehydration 531
46.9.3.1.5 Variation 5: Dehydroxylation--Desulfonylation by the Loss of Acetoxy and Benzenesulfonate Functions 533
46.9.3.2 Method 2: Elimination of Four Bromine Atoms 537
46.9.3.3 Method 3: Elimination of Two Hydrogen Atoms and a Shared Oxygen Atom 537
46.9.4 Synthesis by Other Elimination Procedures 539
46.9.4.1 Method 1: Elimination of Sulfur Dioxide via Variations of the Ramberg--Bäcklund Reaction 539
46.9.4.2 Method 2: Elimination of 4-Methylpyridin-2-amine from N-{1-[4-(Dimethylamino)phenyl]pent-4-enyl}-4-methylpyridin-2-amine Using Rhodium(I) 540
46.9.4.3 Method 3: Elimination by Zeolite NaY 540
46.9.4.4 Method 4: Conversion of Propargyl Ethers into 1,3-Dienes 540
46.10 Synthesis by Reduction 546
46.10.1 Synthesis from Enynes 546
46.10.1.1 Method 1: Hydrogenation Reactions 546
46.10.1.1.1 Variation 1: Using the Lindlar Catalyst 546
46.10.1.1.2 Variation 2: Using a Poisoned Lindlar Catalyst 550
46.10.1.1.3 Variation 3: Using the Rosenmund Catalyst 551
46.10.1.1.4 Variation 4: Using a Palladium on Charcoal Catalyst 553
46.10.1.1.5 Variation 5: Using Raney Nickel Catalyst 553
46.10.1.1.6 Variation 6: Using the P-2 Nickel Catalyst 554
46.10.1.2 Method 2: Hydrometalation Reactions 555
46.10.1.2.1 Variation 1: Hydroboration 556
46.10.1.2.2 Variation 2: Hydroalumination 557
46.10.1.3 Method 3: Other Reduction Processes 560
46.10.1.3.1 Variation 1: Using Hydrazine 560
46.10.1.3.2 Variation 2: Using Metallic Zinc 560
46.10.2 Synthesis from Diynes 564
46.10.2.1 Method 1: Hydrogenation Reactions 564
46.10.2.2 Method 2: Hydrometalation Reactions 564
46.10.2.3 Method 3: Reduction Using Metallic Zinc 565
46.10.3 Synthesis from Arenes 566
46.10.3.1 Method 1: Birch Reductions 566
46.10.3.2 Method 2: Hydride Addition 567
46.11 Synthesis by Isomerization of Unconjugated Dienes, Allenes, Alkynes, and Methylenecyclopropanes 572
46.11.1 Isomerization of Unconjugated Dienes 572
46.11.1.1 Method 1: Base-Mediated Isomerization 572
46.11.1.1.1 Variation 1: Of Unfunctionalized Unconjugated Dienes 572
46.11.1.1.2 Variation 2: Of Functionalized Unconjugated Dienes 573
46.11.1.2 Method 2: Acid-Mediated Isomerization 574
46.11.1.3 Method 3: Electron-Transfer-Mediated Isomerization 575
46.11.1.4 Method 4: Metal-Mediated Isomerization 576
46.11.1.4.1 Variation 1: Palladium-Catalyzed Isomerization 576
46.11.1.4.2 Variation 2: Europium-Catalyzed Isomerization 577
46.11.1.4.3 Variation 3: Zirconocene-Mediated Skeletal Rearrangements 578
46.11.1.4.4 Variation 4: Titanium-Mediated Skeletal Rearrangement 579
46.11.1.5 Method 5: Isomerization by Sigmatropic Rearrangements 580
46.11.1.5.1 Variation 1: Thermally Induced Sigmatropic Rearrangements 580
46.11.1.5.2 Variation 2: Palladium(II)-Assisted Cope Rearrangements 582
46.11.1.6 Method 6: Isomerization by Allylic Substitution Reactions 582
46.11.1.6.1 Variation 1: Palladium(0)-Mediated Substitution of Doubly Allylic Acetates and Carbonates 582
46.11.1.6.2 Variation 2: Rearrangements Mediated by Thionyl Chloride 584
46.11.1.7 Method 7: Isomerization by Other Processes 586
46.11.2 Isomerization of Allenes 586
46.11.2.1 Method 1: Acid-Catalyzed Isomerization 586
46.11.2.2 Method 2: Metal-Catalyzed Isomerization 588
46.11.2.3 Method 3: Thermally and Photochemically Induced Isomerization 591
46.11.2.3.1 Variation 1: Thermal Rearrangements of Polyenes 591
46.11.2.3.2 Variation 2: Photochemical Rearrangements of 1,2,6-Trienes 592
46.11.2.3.3 Variation 3: [1,5]-Sigmatropic Shifts of Vinylallenes 592
46.11.3 Isomerization of Alkynes 594
46.11.3.1 Method 1: Base-Catalyzed Isomerization 594
46.11.3.2 Method 2: Metal-Catalyzed Isomerization 594
46.11.3.2.1 Variation 1: Of Aliphatic Alkynes 594
46.11.3.2.2 Variation 2: Of Ynones 597
46.11.3.3 Method 3: Thermally Induced Rearrangements 600
46.11.3.3.1 Variation 1: Cope Rearrangements of Enynes 601
46.11.3.3.2 Variation 2: Thermally Induced Rearrangements of Propargyl Vinyl Ethers 601
46.11.3.4 Method 4: Organocatalyzed Isomerization of Ynones 604
46.11.4 Isomerization of Methylenecyclopropanes 606
46.11.4.1 Method 1: Transition-Metal-Catalyzed Isomerization of Methylenecyclopropanes 606
46.11.4.1.1 Variation 1: Under Stoichiometric Conditions 606
46.11.4.1.2 Variation 2: Under Catalytic Conditions 607
46.12 Synthesis from Arenes and Polyenes 612
46.12.1 Method 1: Reductive Dearomatization of Arenes by Addition of Organolithiums Followed by Electrophilic Trapping 614
46.12.1.1 Variation 1: Of Electron-Withdrawing Carbon-Substituted Arenes with Alkyl Organolithium Species 614
46.12.1.2 Variation 2: Of Alkenyl-Substituted Arenes with Alkenyl Organolithium Species 617
46.12.1.3 Variation 3: Of Sulfone-Substituted Arenes 618
46.12.1.4 Variation 4: Of Sulfonamide-Substituted Arenes 618
46.12.1.5 Variation 5: Of Phosphinamide-Substituted Arenes 619
46.12.2 Method 2: Alkylation of ortho-Substituted Phenols 619
46.12.2.1 Variation 1: Of Alkali Metal Phenolate Salts 619
46.12.2.2 Variation 2: Of Arenoxasulfonium Ylides by [2,3]-Sigmatropic Rearrangement 622
46.12.3 Method 3: Alkenylation of ortho-Alkyl-Substituted Phenols 623
46.12.4 Method 4: Arylation of ortho-Alkyl-Substituted Phenols 624
46.12.5 Method 5: Alkynylation of ortho-Alkyl-Substituted Phenols 625
46.12.6 Method 6: Hydroxylation of ortho-Alkyl-Substituted Phenols (Synthesis of o-Quinols) 626
46.12.7 Method 7: Alkoxylation of ortho-Alkyl-Substituted Phenols (Synthesis of o-Quinol Ethers) 631
46.12.7.1 Variation 1: Of 2-(Hydroxymethyl)phenols To Give Spiroepoxycyclohexa-2,4-dien-1-ones 631
46.12.7.2 Variation 2: To Give 6-Alkoxy-6-alkylcyclohexa-2,4-dien-1-ones 632
46.12.8 Method 8: Acyloxylation of ortho-Alkyl-Substituted Phenols (Synthesis of o-Quinol Acetates) 632
46.12.9 Method 9: Addition of Oximes to ortho-Alkyl-Substituted Phenols (Synthesis of o-Quinol Oximes) 635
46.12.10 Method 10: Alkoxylation of ortho-Alkoxy-Substituted Phenols (Synthesis of o-Quinone Acetals) 636
46.12.11 Method 11: Acyloxylation of ortho-Alkoxy-Substituted Phenols (Synthesis of o-Quinone Alkoxy Acetates) 638
46.12.12 Method 12: Diacyloxylation of Phenols (Synthesis of o-Quinone Diacetates) 639
46.12.13 Method 13: Amination of ortho-Alkyl-Substituted Phenol Derivatives 640
46.12.14 Method 14: Alkylation of ortho-Alkyl-Substituted Aniline Derivatives 642
46.12.14.1 Variation 1: By Hetero-Claisen Rearrangement of N-Arylhydroxylamine Derivatives 642
46.12.14.2 Variation 2: By Imino-Diels--Alder Reaction 642
46.12.15 Method 15: Alkenylation of ortho-Alkyl-Substituted Anilines 643
46.12.16 Method 16: Hydroxylation of ortho-Alkyl-Substituted Anilines (Synthesis of o-Quinol Imines) 643
46.12.17 Method 17: Acyloxylation of ortho-Alkyl-Substituted Aniline Derivatives (Synthesis of o-Quinol Imide Acetates) 644
46.12.17.1 Variation 1: By Wessely Oxidation 644
46.12.17.2 Variation 2: By Rearrangement of N-Arylhydroxylamine Derivatives 644
46.12.18 Method 18: Amidation of ortho-Alkyl-Substituted Aniline Derivatives (Synthesis of o-Quinol Imide Amides) 645
46.12.19 Method 19: cis-Cyclohexanediols by Enzymatic Dihydroxylation of Arenes 646
46.12.20 Method 20: Alkylations of Polyenes 649
46.12.20.1 Variation 1: Cyclopropanation 649
46.12.20.2 Variation 2: Hydrozirconation 649
46.12.20.3 Variation 3: Nickel-Catalyzed Polyene--Aldehyde Reductive Coupling Reaction with Triethylborane 650
46.12.20.4 Variation 4: Cobalt-Catalyzed Polyene--Alkyl Halide--[(Trimethylsilyl)methyl]magnesium Chloride Coupling Reaction 650
46.12.21 Method 21: Epoxidation of Polyenes 651
46.12.21.1 Variation 1: Juliá--Colonna Asymmetric Epoxidation 651
46.12.21.2 Variation 2: Chiral Manganese(III)--salen Catalyzed Epoxidation 651
46.12.21.3 Variation 3: Chiral-Dioxirane-Catalyzed Epoxidation 652
46.12.22 Method 22: Dihydroxylation of Polyenes 653
46.13 Synthesis via Metal Complexes of Dienes 660
46.13.1 Release of 1,3-Dienes by Demetalation of Tricarbonyl(1,3-diene)iron Complexes 660
46.13.1.1 Method 1: Oxidative Demetalation 660
46.13.1.2 Method 2: Ligand Exchange 660
46.13.2 Isomerization of 1,4-Dienes 662
46.13.2.1 Method 1: Synthesis via Intermediate Tricarbonyl(1,3-diene)iron Complexes 662
46.13.3 Acylation of Tricarbonyl(1,3-diene)iron Complexes 663
46.13.3.1 Method 1: Intermolecular Acylation 663
46.13.3.2 Method 2: Intramolecular Acylation 665
46.13.4 Palladium-Catalyzed Coupling of Substituted (1,3-Diene)iron Complexes 665
46.13.5 Cyclization of (1,3-Diene)iron Complexes with Pendent Double Bonds 665
46.13.6 Oxidative Cyclization of (1,3-Diene)metal Complexes 666
46.13.6.1 Method 1: Oxidative Cyclization of Tricarbonyl(1,3-diene)iron Complexes 667
46.13.6.2 Method 2: Oxidative Cyclization of Cyclohexa-1,3-diene(cyclopentadienyl)cobalt Complexes 668
46.13.7 Modification at the Periphery of Tricarbonyl(.4-1,3-diene)iron Complexes 669
46.13.7.1 Method 1: Nucleophilic Addition to Carbonyl and Heterocarbonyl Functions Adjacent to Tricarbonyl(.4-1,3-diene)iron Complexes 669
46.13.7.1.1 Variation 1: Addition to Aldehydes 669
46.13.7.1.2 Variation 2: Addition to Imines 670
46.13.7.1.3 Variation 3: Addition to Ketones 671
46.13.7.1.4 Variation 4: Addition to Carboxylic Acid Derivatives 673
46.13.7.2 Method 2: Reactions at Groups Other Than Carbonyl or Heterocarbonyl Adjacent to Tricarbonyl(.4-1,3-diene)iron Complexes 674
46.13.7.2.1 Variation 1: Reaction of Electrophiles with Tricarbonyl(dienoate)iron or Tricarbonyl(dienone)iron Complexes 674
46.13.7.2.2 Variation 2: Addition to Tricarbonyl(.4-triene)iron Complexes 675
46.13.7.2.3 Variation 3: Substitution of Tricarbonyl(2,4-dien-1-ol)iron Derivatives 675
46.13.8 Reaction of (.5-Dienyl)metal Complexes with Nucleophiles 677
46.13.8.1 Method 1: Reaction of Cyclic (.5-Dienyl)iron Complexes with Nucleophiles 677
46.13.8.2 Method 2: Reaction of Acyclic (.5-Dienyl)iron Complexes with Nucleophiles 680
46.13.8.3 Method 3: Reaction of Cyclic (.5-Dienyl)manganese Complexes with Nucleophiles 681
46.13.9 Reactions of (p-Allyl)tricarbonyliron Lactone Complexes 683
46.13.9.1 Method 1: Modification at the Periphery of (p-Allyl)tricarbonyliron Lactone Complexes 683
46.13.10 Cyclopentadienones by Iron-Mediated [2 + 2 + 1] Cycloaddition 684
46.13.10.1 Method 1: Reaction of Alkynes with Pentacarbonyliron 684
Keyword Index 692
Author Index 734
Abbreviations 762

Erscheint lt. Verlag 11.12.2013
Reihe/Serie Science of Synthesis
Verlagsort Stuttgart
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Technik
Schlagworte 1 • 3-Dienes • 3- dienes • Chemie • Chemische Synthese • chemistry of organic compound • chemistry organic reaction • chemistry reference work • C HEMISTRY REFERENCE WORK • chemistry synthetic methods • compound functional group • compound organic synthesis • compounds with all-carbon functions • Mechanism • methods in organic synthesis • methods peptide synthesis • Organic Chemistry • organic chemistry functional groups • organic chemistry reactions • organic chemistry review • organic chemistry synthesis • ORGANIC CHEM ISTRY SYNTHESIS • organic method • organic reaction • organic reaction mechanism • ORGANI C REACTION MECHANISM • Organic Syntheses • organic synthesis • organic synthesis reference work • Organisch-chemische Synthese • Organische Chemie • Peptide synthesis • Practical • practical organic chemistry • Reactions • reference work • Review • review organic synthesis • review synthetic methods • REVIEW SYNTHE TIC METHODS • Synthese • Synthetic chemistry • Synthetic Methods • Synthetic Organic Chemistry • synthetic transformation
ISBN-10 3-13-172261-4 / 3131722614
ISBN-13 978-3-13-172261-4 / 9783131722614
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 11,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich