Quantum Mechanics for Electrical Engineers (eBook)
448 Seiten
John Wiley & Sons (Verlag)
978-1-118-16977-3 (ISBN)
indicates. It specifically targets those topics within quantum
mechanics that are needed to understand modern semiconductor
theory. It begins with the motivation for quantum mechanics and why
classical physics fails when dealing with very small particles and
small dimensions. Two key features make this book different from
others on quantum mechanics, even those usually intended for
engineers: First, after a brief introduction, much of the
development is through Fourier theory, a topic that is at the heart
of most electrical engineering theory. In this manner, the
explanation of the quantum mechanics is rooted in the mathematics
familiar to every electrical engineer. Secondly, beginning with the
first chapter, simple computer programs in MATLAB are used to
illustrate the principles. The programs can easily be copied and
used by the reader to do the exercises at the end of the chapters
or to just become more familiar with the material.
Many of the figures in this book have a title across the top.
This title is the name of the MATLAB program that was used to
generate that figure. These programs are available to the reader.
Appendix D lists all the programs, and they are also downloadable
at href="http://booksupport.wiley.com/">http://booksupport.wiley.com
DENNIS M. SULLIVAN is Professor of Electrical and Computer Engineering at the University of Idaho as well as an award-winning author and researcher. In 1997, Dr. Sullivan's paper "Z Transform Theory and FDTD Method" won the IEEE Antennas and Propagation Society's R. P. W. King Award for the Best Paper by a Young Investigator. He is the author of Electromagnetic Simulation Using the FDTD Method.
1. Introduction
1.1 Why Quantum Mechanics
1.2 Simulation of the One-Dimensional, Time-Dependent Schrödinger Equation
1.3 Physical Parameters-the Observables
1.4 The Potential V(X)
1.5 Propagating Through Potential Barriers
1.6 Summary
2. Stationary States
2.1 The Infinite Well
2.2 Eigenfunction Decomposition
2.3 Periodic Boundary Conditions
2.4 Eigenfunctions for Arbitrarily Shaped Potentials
2.5 Coupled Wells
2.6 Bra-ket Notation
2.7 Summary.
3. Fourier Theory in Quantum Mechanics
3.1 The Fourier Transform
3.2 Fourier Analysis and Available States
3.3 Uncertainty
3.4 Transmission via FFT
3.5 Summary
4. Matrix Algebra in Quantum Mechanics
4.1 Vector and Matrix Representation
4.2 Matrix Representation of the Hamiltonian
4.3 The Eigenspace Representation
4.4 Formalism
5. Statistical Mechanics
5.1 Density of States
5.2 Probability Distributions
5.3 The Equilibrium Distribution of Electrons and Holes
5.4 The Electron Density and the Density Matrix
6. Bands and Subbands
6.1 Bands in Semiconductors
6.2 The Effective Mass
6.3 Modes (Subbands) in Quantum Structures
7. The Schrödinger Equation for Spin-1.2 Fermions
7.1 Spin in Fermions
7.2 An Electron in a Magnetic Field
7.3 A Charged Particle Moving in Combined E and B fields
7.4 The Hartree-Fock Approximation
8. Green's Functions Formulation
8.1 Introduction
8.2 The Density Matrix and the Spectral Matrix
8.3 The Matrix Version of the Green's Function
8.4 The Self-Energy Matrix
9. Transmission
9.1 The Single-Energy Channel
9.2 Current Flow
9.3 The Transmission Matrix
9.4 Conductance
9.5 Büttiker probes
9.6 A Simulation Example
10. Approximation Methods
10.1 The Variational Method
10.2 Non-Degenerate Perturbation Theory
10.3 Degenerate Perturbation Theory
10.4 Time-Dependent Perturbation Theory
11. The Harmonic Oscillator
11.1 The Harmonic Oscillator in One Dimension
11.2 The Coherent State of the Harmonic Oscillator
11.3 The Two-Dimensional Harmonic Oscillator
12. Finding Eigenfunctions Using Time-Domain Simulation
12.1 Finding the Eigenenergies and Eigenfunctions in One-Dimension
12.2 Finding the Eigenfunctions of Two-Dimensional Structures
12.3 Finding a Complete set of Eigenfunctions
Appendix A. Important Constants and Units
Appendix B. Fourier Analysis and the Fast Fourier Transform (FFT)
Appendix C. An Introduction to the Green's Function
Appendix D. Listing of Computer Programs
Erscheint lt. Verlag | 29.11.2011 |
---|---|
Reihe/Serie | IEEE Press Series on Microelectronic Systems | IEEE Press Series on Microelectronic Systems |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Quantenphysik |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | Circuit Theory & Design / VLSI / ULSI • Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • Halbleiter • Quantenelektronik • Quantenmechanik • Quantum Electronics • Schaltkreise - Theorie u. Entwurf / VLSI / ULSI • Schaltkreistechnik • semiconductors |
ISBN-10 | 1-118-16977-8 / 1118169778 |
ISBN-13 | 978-1-118-16977-3 / 9781118169773 |
Haben Sie eine Frage zum Produkt? |
Größe: 24,8 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich