Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Microwave-assisted Extraction for Bioactive Compounds (eBook)

Theory and Practice
eBook Download: PDF
2012 | 2013
XII, 240 Seiten
Springer US (Verlag)
978-1-4614-4830-3 (ISBN)

Lese- und Medienproben

Microwave-assisted Extraction for Bioactive Compounds -
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
With increasing energy prices and the drive to reduce CO2 emissions, food industries are challenged to find new technologies in order to reduce energy consumption, to meet legal requirements on emissions, product/process safety and control, and for cost reduction and increased quality as well as functionality. Extraction is one of the promising innovation themes that could contribute to sustainable growth in the chemical and food industries. For example, existing extraction technologies have considerable technological and scientific bottlenecks to overcome, such as often requiring up to 50% of investments in a new plant and more than 70% of total process energy used in food, fine chemicals and pharmaceutical industries. These shortcomings have led to the consideration of the use of new 'green' techniques in extraction, which typically use less solvent and energy, such as microwave extraction. Extraction under extreme or non-classical conditions is currently a dynamically developing area in applied research and industry. Using microwaves, extraction and distillation can now be completed in minutes instead of hours with high reproducibility, reducing the consumption of solvent, simplifying manipulation and work-up, giving higher purity of the final product, eliminating post-treatment of waste water and consuming only a fraction of the energy normally needed for a conventional extraction method. Several classes of compounds such as essential oils, aromas, anti-oxidants, pigments, colours, fats and oils, carbohydrates, and other bioactive compounds have been extracted efficiently from a variety of matrices (mainly animal tissues, food, and plant materials). The advantages of using microwave energy, which is a non-contact heat source, includes more effective heating, faster energy transfer, reduced thermal gradients, selective heating, reduced equipment size, faster response to process heating control, faster start-up, increased production, and elimination of process steps. This book will present a complete picture of the current knowledge on microwave-assisted extraction (MAE) of bioactive compounds from food and natural products. It will provide the necessary theoretical background and details about extraction by microwaves, including information on the technique, the mechanism, protocols, industrial applications, safety precautions, and environmental impacts.

Farid Chemat, Professor

His main research interests are focused on innovative and sustainable extraction techniques (especially microwave, ultrasound and green solvents) for food, pharmaceutical and cosmetic applications. He is coordinator of a new group named 'France Eco-Extraction' dealing with international dissemination of research and education on green extraction technologies.

Université d'Avignon et des Pays du Vaucluse, INRA, UMR 408, F-84000 Avignon, France.

 

Giancarlo Cravotto, Professor

His research activity has been cantered on pharmacologically active natural products (isolation, structural elucidation, total synthesis and chemical modification). These studies have paved the road to new synthetic procedures and extraction techniques, particularly in the fields of ultrasound- and microwave-assisted protocols and flow-chemistry.

Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, I-10125 Turin, Italy.


With increasing energy prices and the drive to reduce CO2 emissions, food industries are challenged to find new technologies in order to reduce energy consumption, to meet legal requirements on emissions, product/process safety and control, and for cost reduction and increased quality as well as functionality. Extraction is one of the promising innovation themes that could contribute to sustainable growth in the chemical and food industries. For example, existing extraction technologies have considerable technological and scientific bottlenecks to overcome, such as often requiring up to 50% of investments in a new plant and more than 70% of total process energy used in food, fine chemicals and pharmaceutical industries. These shortcomings have led to the consideration of the use of new "e;green"e; techniques in extraction, which typically use less solvent and energy, such as microwave extraction. Extraction under extreme or non-classical conditions is currently a dynamically developing area in applied research and industry. Using microwaves, extraction and distillation can now be completed in minutes instead of hours with high reproducibility, reducing the consumption of solvent, simplifying manipulation and work-up, giving higher purity of the final product, eliminating post-treatment of waste water and consuming only a fraction of the energy normally needed for a conventional extraction method. Several classes of compounds such as essential oils, aromas, anti-oxidants, pigments, colours, fats and oils, carbohydrates, and other bioactive compounds have been extracted efficiently from a variety of matrices (mainly animal tissues, food, and plant materials). The advantages of using microwave energy, which is a non-contact heat source, includes more effective heating, faster energy transfer, reduced thermal gradients, selective heating, reduced equipment size, faster response to process heating control, faster start-up, increased production, and elimination of process steps. This book will present a complete picture of the current knowledge on microwave-assisted extraction (MAE) of bioactive compounds from food and natural products. It will provide the necessary theoretical background and details about extraction by microwaves, including information on the technique, the mechanism, protocols, industrial applications, safety precautions, and environmental impacts.

Farid Chemat, ProfessorHis main research interests are focused on innovative and sustainable extraction techniques (especially microwave, ultrasound and green solvents) for food, pharmaceutical and cosmetic applications. He is coordinator of a new group named “France Eco-Extraction” dealing with international dissemination of research and education on green extraction technologies.Université d’Avignon et des Pays du Vaucluse, INRA, UMR 408, F-84000 Avignon, France. Giancarlo Cravotto, ProfessorHis research activity has been cantered on pharmacologically active natural products (isolation, structural elucidation, total synthesis and chemical modification). These studies have paved the road to new synthetic procedures and extraction techniques, particularly in the fields of ultrasound- and microwave-assisted protocols and flow-chemistry.Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, I-10125 Turin, Italy.

1. Microwave-assisted extraction - an introduction to dielectric heating.- 2. Fundamentals of microwave extraction.- 3. Microwave assisted extraction of essential oils and aromas.- 4. The Role of Microwaves in the Extraction of Fats and Oils.- 5. Microwave-Assisted Extraction of Antioxidants and Food Colors.- 6. The Role of Micowaves in Omics Disciplines.- 7. Pharmaceutical and nutraceutical compounds from natural matrices.- 8. From Laboratory to Industry: Scale-up, Quality and Safety Consideration for Microwave-Assisted Extraction.

Erscheint lt. Verlag 12.12.2012
Reihe/Serie Food Engineering Series
Food Engineering Series
Zusatzinfo XII, 240 p.
Verlagsort New York
Sprache englisch
Themenwelt Naturwissenschaften Biologie Biochemie
Naturwissenschaften Chemie
Technik Lebensmitteltechnologie
Schlagworte biochemical engineering • MAE • microwave-assisted extraction • microwave energy
ISBN-10 1-4614-4830-1 / 1461448301
ISBN-13 978-1-4614-4830-3 / 9781461448303
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Donald Voet; Judith G. Voet; Charlotte W. Pratt

eBook Download (2019)
Wiley-VCH Verlag GmbH & Co. KGaA
CHF 72,25

von Donald Voet; Judith G. Voet; Charlotte W. Pratt

eBook Download (2019)
Wiley-VCH Verlag GmbH & Co. KGaA
CHF 72,25