Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Elliptic Genera and Vertex Operator Super-Algebras - Hirotaka Tamanoi

Elliptic Genera and Vertex Operator Super-Algebras

Buch | Softcover
VIII, 396 Seiten
1999 | 1999
Springer Berlin (Verlag)
978-3-540-66006-4 (ISBN)
CHF 74,80 inkl. MwSt
This monograph deals with two aspects of the theory of elliptic genus: its topological aspect involving elliptic functions, and its representation theoretic aspect involving vertex operator super-algebras. For the second aspect, elliptic genera are shown to have the structure of modules over certain vertex operator super-algebras. The vertex operators corresponding to parallel tensor fields on closed Riemannian Spin Kähler manifolds such as Riemannian tensors and Kähler forms are shown to give rise to Virasoro algebras and affine Lie algebras. This monograph is chiefly intended for topologists and it includes accounts on topics outside of topology such as vertex operator algebras.

and summary of results.- Elliptic genera.- Vertex operator super algebras.- G-invariant vertex operator super subalgebras.- Geometric structure in vector spaces and reduction of structure groups on manifolds.- Infinite dimensional symmetries in elliptic genera for Kähler manifolds.

Erscheint lt. Verlag 21.6.1999
Reihe/Serie Lecture Notes in Mathematics
Zusatzinfo VIII, 396 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 517 g
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Geometrie / Topologie
Naturwissenschaften Physik / Astronomie
Schlagworte affine Lie algebras • Algebra • Algebraische Topologie • Elliptische Funktion • Hardcover, Softcover / Mathematik/Arithmetik, Algebra • HC/Mathematik/Arithmetik, Algebra • Kähler manifolds • modular functions • Operatoralgebra • Operator (Math.) • Spin representations • super algebras • Vector Space • vertex operator • Virasoro algebras
ISBN-10 3-540-66006-2 / 3540660062
ISBN-13 978-3-540-66006-4 / 9783540660064
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich