Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Scanning Probe Microscopy of Functional Materials -

Scanning Probe Microscopy of Functional Materials (eBook)

Nanoscale Imaging and Spectroscopy
eBook Download: PDF
2010 | 2011
XVIII, 555 Seiten
Springer New York (Verlag)
978-1-4419-7167-8 (ISBN)
Systemvoraussetzungen
213,99 inkl. MwSt
(CHF 208,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The goal of this book is to provide a general overview of the rapidly developing field of novel scanning probe microscopy (SPM) techniques for characterization of a wide range of functional materials, including complex oxides, biopolymers, and semiconductors. Many recent advances in condensed matter physics and materials science, including transport mechanisms in carbon nanostructures and the role of disorder on high temperature superconductivity, would have been impossible without SPM. The unique aspect of SPM is its potential for imaging functional properties of materials as opposed to structural characterization by electron microscopy. Examples include electrical transport and magnetic, optical, and electromechanical properties. By bringing together critical reviews by leading researchers on the application of SPM to to the nanoscale characterization of functional materials properties, this book provides insight into fundamental and technological advances and future trends in key areas of nanoscience and nanotechnology.



Sergei Kalinin is a researcher at Oak Ridge National Laboratory. Alexei Gruverman is an associate professor at University of Nebraska-Lincoln.
The goal of this book is to provide a general overview of the rapidly developing field of novel scanning probe microscopy (SPM) techniques for characterization of a wide range of functional materials, including complex oxides, biopolymers, and semiconductors. Many recent advances in condensed matter physics and materials science, including transport mechanisms in carbon nanostructures and the role of disorder on high temperature superconductivity, would have been impossible without SPM. The unique aspect of SPM is its potential for imaging functional properties of materials as opposed to structural characterization by electron microscopy. Examples include electrical transport and magnetic, optical, and electromechanical properties. By bringing together critical reviews by leading researchers on the application of SPM to to the nanoscale characterization of functional materials properties, this book provides insight into fundamental and technological advances and future trends in key areas of nanoscience and nanotechnology.

Sergei Kalinin is a researcher at Oak Ridge National Laboratory. Alexei Gruverman is an associate professor at University of Nebraska-Lincoln.

Preface 6
References 10
Contents 12
Contributors 16
Part I:Spectroscopic SPM at theResolution Limits 20
Chapter 1: Excitation and Mechanisms of Single Molecule Reactions in Scanning Tunneling Microscopy 21
Introduction 21
Measurement of Single-Molecule Reactions 23
Excitation Rate 24
Energy Threshold for a Vibrationally Mediated Reactions and Action Spectroscopy 26
Reactions Involving Excited Electronic and Anionic States 30
Rate Constant of a Single-Molecule Reaction 33
Theoretical Aspects of Single- and Multiple-Electron Processes 34
Delocalized Excitation in the Molecular Junction 40
Tip Effects and Field-Induced Manipulation 44
Collective Reactivity of Molecular Aggregates 46
Conclusions and Outlook 50
References 50
Chapter 2: High-Resolution Architecture and Structural Dynamics of Microbial and Cellular Systems: Insights from in Vitro Atomic Force Microscopy 56
Introduction 56
AFM Investigations of Spore Morphology, Structural Dynamics and Spore Coat Architecture 57
Bacillus and Clostridium Spore Morphology 58
Spore Size Distributions 60
Spore Response to a Change in the Environment from Fully Hydrated to Air-Dried State 61
High-Resolution Structure and Assembly of the Spore Coat 63
Unraveling of the Spore Coat Assembly with AFM-Based Immunolabeling 69
Spore Coat Assembly 71
Mechanisms of Spore Germination 72
Emergence of Vegetative Cells 76
Bacteria–Mineral Interactions on the Surfaces of Metal-Resistant Bacteria 81
References 83
Part II:Dynamic Spectroscopic SPM 86
Chapter 3: Dynamic Force Microscopy and Spectroscopy in Ambient Conditions: Theory and Applications 87
Introduction 87
General Theory of Dynamic Force Microscopy 88
Formulation of the Problem and Basic Equation of Motion 88
Driven and Self-Driven Cantilevers in Dynamic Force Microscopy 91
Tip–Sample Interaction Force in Air 93
Theory of AM Mode Including Tip–Sample Forces 94
Measuring the Tip–Sample Interaction Force 98
Theory of FM Mode Including Tip–Sample Forces 101
Mapping of Tip–Sample Interactions in Ambient Conditions 103
Experimental Comparison of the AM- and FM mode 103
Mapping the Tip–Sample Interactions on Biological Samples 105
Conclusion 107
Acknowledgments 108
References 108
Chapter 4: Measuring Mechanical Properties on the Nanoscale with Contact Resonance Force Microscopy Methods* 111
Introduction 111
Single-Point Measurements of Elastic Modulus 113
Basic Concepts 113
Models for Data Analysis 114
Experimental Techniques 117
Results for Elastic Modulus 119
Beyond the Basics: Further CR-FM Techniques 120
Measuring Shear Elastic Properties 120
Measuring Viscoelastic Properties 123
Imaging with CR-FM Techniques 127
Qualitative Stiffness Imaging 127
Quantitative Imaging: Modulus Mapping 128
Application to Buried Interfaces 133
Summary and Conclusions 136
References 137
Chapter 5: Multi-Frequency Atomic Force Microscopy 141
Multi-Frequency Motivation 142
Cantilever Resonant Modes and Boundary Conditions 143
Methods 147
Attractive and Repulsive Mode 147
Feedback 148
Intermittent- and Non-contact Bimodal Experimental Results 149
The Energy Viewpoint 151
High Resolution, Low Force Bimodal Imaging 154
Separating Long- and Short-Range Forces: Bimodal Magnetic Force Microscopy 156
Multiple Frequencies at the Same Resonance Peak 156
Revisiting Past Assumptions: More Than Two Independent Variables 156
Frequency Tracking 158
Dual AC Resonance Tracking 159
Intermodulation AFM 162
Conclusions, Future Challenges and Opportunities 163
References 164
Chapter 6: Dynamic Nanomechanical Characterization Using Multiple-Frequency Method 168
Measurement Basics 169
The Tapping Cantilever Moves in a Sinusoidal Trajectory 170
Information About the Mechanical Properties Are Contained in Higher Harmonic Forces 171
There Are Multiple Force Sensors in a Single Cantilever 174
High-Speed and High Spatial Resolution Nanomechanical Analysis with Large Dynamic Range 181
Torsional Harmonics Provide a Large Dynamic Range in Mechanical Measurements 181
High Resolution Maps of Stiffness, Adhesion, and Dissipation Can Be Obtained in a Single Tapping-Mode Scan 184
Sub-molecular Resolution Mechanical Measurements with Ultra Sharp Tips and Lower Forces 187
High Resolution Thermo-Mechanical Characterization of Polymer Blends 189
References 193
Part III:Thermal Characterization by SPM 194
Chapter 7: Toward Nanoscale Chemical Imaging: The Intersection of Scanning Probe Microscopy and Mass Spectrometry 195
Introduction 195
Atmospheric Pressure Mass Spectrometry Techniques 198
Thermal Desorption with Secondary Ionization Mass Spectrometry 198
Laser Desorption (Ablation) Ionization Mass Spectrometry 200
References 209
Chapter 8: Dynamic SPM Methods for Local Analysis of Thermo-Mechanical Properties 213
The Need for Localized Mechanical Analysis: Industrial and Basic Science Perspective 213
Mechanical Characterization of the Materials with High Spatial Resolution: Lessons from Nanoindentation 214
Principles of Thermo-Mechanical Analysis Using AFM Platform: Examples of Thermo-Mechanical Properties Mapping 216
Transition Temperature Microscopy 217
Scanning Thermal Expansion Microscopy 220
Thermally Assisted Atomic Force Acoustic Microscopy 222
Multiple Frequency Methods for Thermo-Mechanical Mapping (BE-NanoTA and Z-Therm) 223
Types of Probes Used for Thermo-Mechanical Analysis 231
Wollaston Probe 231
Silicon Heater 233
Mathematical Models for Understanding Thermo-Mechanical Results 234
Contact Mechanics Model of Elastic Media in the Presence of a Heat Transfer 235
Contact Mechanical Model for Deconvolution of the Mechanical Properties of Samples from Parameters of Tip–Surface Contact Resonance 236
Technique Development Prospects and Limitations 237
References 240
Part IV:Electrical and Electromechanical SPM 244
Chapter 9: Advancing Characterization of Materials with Atomic Force Microscopy-Based Electric Techniques 245
Scanning Probe Microscopy in its Development 245
Electrostatic and Electromechanical Interactions in Atomic Force Microscopy 248
Detection of Electrostatic Responses in AFM 250
KFM Applications 252
Challenges and Solutions 255
Piezoresponse Force Microscopy: Background and Applications 257
Implementation of EFM, KFM and PFM 262
Electric Force Microscopy and Kelvin Force Microscopy: AM–AM approach 262
Electric Force Microscopy and Kelvin Force Microscopy: AM–FM Approach 265
Experiments in PFM 267
Probes for AFM-Based Electric Studies 270
Practical Studies with AFM-Based Electric Modes 273
General Comments 273
Evaluation of Different Approaches in EFM and KFM 280
Metals and Semiconductors 288
Examination of Molecular Self-Assemblies 293
Conclusions and Further Outlook 306
References 308
Chapter 10: Quantitative Piezoresponse Force Microscopy: Calibrated Experiments, Analytical Theory and Finite Element Modeling 313
Ferroelectric Wall Width as a PFM Challenge 314
Calibration, Background Subtraction, and Frequency Dispersion of PFM Displacements 317
Tip Size Dependence of PFM Amplitude and Profile 318
Finite Element Simulation: General Approach 322
FEM Simulation of the Potential and Electric Fields Under the PFM Tip 323
Comparison Between Vertical PFM Experiments, Simulation, and Theory 330
Lateral PFM: Experiments, Simulation, and Theory 334
Conclusions 337
References 338
Chapter 11: High-Speed Piezo Force Microscopy: Novel Observations of Ferroelectric Domain Poling, Nucleation, and Growth 341
Introduction 341
High-Speed Piezo Force Microscopy 342
High-Speed Imaging 344
Domain Wall Motion 346
Domain Nucleation and Growth 348
High-Speed Domain Writing 352
Other Applications 354
Conclusion 355
References 355
Chapter 12: Polar Structures in Relaxors by Piezoresponse Force Microscopy 357
Introduction 357
Polar Nanoregions: Experimental Evidences, Structure, Mechanisms 358
Temperature Evolution of Polar Structures in Relaxors 360
Piezoresponse Force Microscopy Investigations of Uniaxial Relaxors SrxBa1–xNb2O6 363
SrxBa1–xNb2O6: Structural Considerations 363
SrxBa1–xNb2O6: Polar Structures Below TC 365
SrxBa1–xNb2O6: Temperature Evolution of the Polar Structures 370
Piezoresponse Force Microscopy Studies of Cubic Relaxors 374
Pb(Mg1/3Nb2/3)O3–PbTiO3 Single Crystals 374
PbZn1/3Nb2/3O3–PbTiO3 Single Crystals 379
Polycrystalline Materials (Ceramics) 383
Temperature Evolution of Domains in the PMN–PT Ceramics 383
Grain Size Effect in Pb0.9125La0.0975(Zr0.65Ti0.3)0.976O3 Ceramics 385
Thin Films 388
Outlook 391
References 392
Chapter 13: Symmetries in Piezoresponse Force Microscopy 396
Conventional Interpretation of PFM Images 396
Orientation of the Polarization and the Piezoelectric Tensor 397
Nonlocal Piezoelectric Response 398
Device Asymmetries 399
Cantilever Axes: Optical Amplification 400
Deconvolution of Cantilever Deflection Modes:Mechanical Crosstalk 401
Alignment of the Photodiode: Optical Crosstalk 403
Beam Asymmetry 405
Sample Asymmetries 405
Topography 405
Induced Topography 406
Topography Crosstalk 408
Local Heterogeneities 408
Substrate Signatures 410
Conductivity 411
Contact Asymmetries 411
Tip Curvature 411
Bow Waves 412
Summary 412
References 413
Part V:Novel SPM Concepts 414
Chapter 14: New Capabilities at the Interface of X-Rays and Scanning Tunneling Microscopy* 415
Introduction 415
Basic Interactions of X-Rays with Matter 416
The Physics of X-Ray-Enhanced Scanning Tunneling Microscopy 419
The Development of Synchrotron Radiation-EnhancedScanning Tunneling Microscopy 423
Fabrication of Insulator-Coated Smart Tips 427
Photoelectron Detection Using a Scanning Tunneling Microscope 429
X-Ray-Assisted Scanning Tunneling Microscopy 435
Concluding Remarks 439
References 440
Chapter 15: Scanning Ion Conductance Microscopy 442
Introduction 442
Fundamental Principles 443
Basic Experimental Setup 443
Nanopipette Probes 444
Half-Cell Electrodes 445
Ionic Conductivity 446
Ionic Currents in SICM 447
Geometry of the Pipette–Sample System 447
Analytical Model 448
Finite Element Model 449
Experimental Ion Current vs. Distance Curves 451
Basic Imaging Modes 452
Imaging with Simple Ion Current Feedback 452
Limitations of Simple Ion Current Feedback 454
Distance-Modulation Methods 455
Applications 456
Advanced Imaging Modes 459
High-Resolution Imaging 459
Combination with Other Scanning Techniques 460
Combination with Optical Microscopy 461
Combination with Atomic Force Microscopy 461
Combination with Shear Force Microscopy 462
Elasticity Measurements with SICM 464
Outlook 466
References 466
Chapter 16: Combined Voltage-Clamp and Atomic Force Microscope for the Study of Membrane Electromechanics 470
Introduction 470
Tools for Membrane Electromechanics at Molecular Scale 470
Background on Voltage-Clamp AFM on Cells 472
Methods 474
Channel cDNA 474
Cell Culture and Transfection 474
Recording Solutions 474
Voltage Clamp 475
Atomic Force Microscopy 475
AFM Cantilevers 475
AFM Measurement of Cell Stiffness 476
VC-AFM Setup 476
VC-AFM Data Acquisition 476
Data Selection and Analysis 478
Results 478
Force Clamp 478
Limitations of a Cantilever as a Force Sensor 478
Cell is a Mechanically Imperfect Substrate 479
Electrical Behavior of Wild-Type and Shaker-Transfected HEK Cells 483
Membrane Electro-Mechanics (MEM) 483
Wild-Type HEK MEM 483
Acetylcholine Receptor Transfected HEK MEM 486
Shaker-Transfected HEK MEM 486
NMDG+Ion Replacement 488
Symmetric K+ 490
Shaker IL Mutant MEM 490
Discussion 492
Channel Density 493
Flux Effects 493
References 496
Chapter 17: Dynamic and Spectroscopic Modes and Multivariate Data Analysis in Piezoresponse Force Microscopy 499
Introduction 499
Electromechanics on the Nanoscale 499
Piezoresponse Force Microscopy 501
Switching Spectroscopy-PFM 504
PFM Spectroscopy 504
Switching Spectroscopy-Piezoresponse Force Microscopy of Films 507
SS-PFM of Capacitors 512
High-Frequency PFM and Topographic Cross-Talk 516
Historical Notes 517
Dual AC Resonance Tracking in PFM 520
Band Excitation PFM 522
The Need for Band Excitation 522
Principles of Band Excitation 523
Data Analysis in Band Excitation 524
Fitting Models 524
Principle Component Analysis 526
Band Excitation Piezoresponse Spectroscopy 528
BEPS of Free Surfaces 529
Summary and Outlook 532
References 532
Chapter 18: Polarization Behavior in Thin Film Ferroelectric Capacitors at the Nanoscale 537
Introduction 537
Experimental Approach 538
Capacitor Scaling Effect on Domain Switching Kinetics 541
Effect of Film Microstructure on Domain Switching Kinetics 542
Mechanical Stress Effect on Static Polarization Behavior 544
Summary 547
References 547
Index 549

Erscheint lt. Verlag 13.12.2010
Zusatzinfo XVIII, 555 p.
Verlagsort New York
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Technik Maschinenbau
Schlagworte Functional Materials • Nanoscale Characterization • Scanning Probe Microscopy
ISBN-10 1-4419-7167-X / 144197167X
ISBN-13 978-1-4419-7167-8 / 9781441971678
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 35,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Eigenschaften, Verarbeitung, Konstruktion

von Erwin Baur; Dietmar Drummer; Tim A. Osswald; Natalie Rudolph

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
CHF 68,35