Infrasound Monitoring for Atmospheric Studies (eBook)
XIX, 735 Seiten
Springer Netherlands (Verlag)
978-1-4020-9508-5 (ISBN)
A. Le Pichon (Master Degree in Fundamental Physics. PhD in Acoustics) Since 1998, geophysicist at the French National Data Center (NDC), hosted by CEA/DASE, in charge of Infrasound research activities on topics relevant to Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO): signal processing for automated detection and source location procedures, propagation modeling, methods for source characterization.
E. Blanc: Research director at CEA. Main research areas are infrasound and gravity waves, electrodynamical coupling of the atmospheric layers, atmospheric disturbances produced by lightning and sprites. She coordinated international research projects: study of infrasound from strong chemical explosions in USA and in Russia, HF radar observations of the disturbances of the equatorial ionosphere, space observations of lightning and sprite.
A. Hauchecorne (Research director at CNRS; since 2005 Director of Aeronomy Service Laboratory):Main research areas are dynamics and climatology of the middle atmosphere; transport and mixing of ozone and minor constituents in the stratosphere; analysis of satellite data analysis and data assimilation in the field of stratospheric chemistry; lidar techniques for the measurement of stratospheric parameters.
The use of infrasound to monitor the atmosphere has, like infrasound itself, gone largely unheard of through the years. But it has many applications, and it is about time that a book is being devoted to this fascinating subject. Our own involvement with infrasound occurred as graduate students of Prof. William Donn, who had established an infrasound array at the Lamont-Doherty Geological Observatory (now the Lamont-Doherty Earth Observatory) of Columbia University. It was a natural outgrowth of another major activity at Lamont, using seismic waves to explore the Earth's interior. Both the atmosphere and the solid Earth feature velocity (seismic or acoustic) gradients in the vertical which act to refract the respective waves. The refraction in turn allows one to calculate the respective background structure in these mediums, indirectly exploring locations that are hard to observe otherwise. Monitoring these signals also allows one to discover various phenomena, both natural and man-made (some of which have military applications).
A. Le Pichon (Master Degree in Fundamental Physics. PhD in Acoustics) Since 1998, geophysicist at the French National Data Center (NDC), hosted by CEA/DASE, in charge of Infrasound research activities on topics relevant to Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO): signal processing for automated detection and source location procedures, propagation modeling, methods for source characterization. E. Blanc: Research director at CEA. Main research areas are infrasound and gravity waves, electrodynamical coupling of the atmospheric layers, atmospheric disturbances produced by lightning and sprites. She coordinated international research projects: study of infrasound from strong chemical explosions in USA and in Russia, HF radar observations of the disturbances of the equatorial ionosphere, space observations of lightning and sprite. A. Hauchecorne (Research director at CNRS; since 2005 Director of Aeronomy Service Laboratory):Main research areas are dynamics and climatology of the middle atmosphere; transport and mixing of ozone and minor constituents in the stratosphere; analysis of satellite data analysis and data assimilation in the field of stratospheric chemistry; lidar techniques for the measurement of stratospheric parameters.
Infrasound Monitoring for Atmospheric Studies 1
Preface 1
Foreword 1
Introduction 1
Contributors 1
Part1.pdf 18
LePichon_Ch01.pdf 19
Chapter 1 19
The Characteristics of Infrasound, its Propagation and Some Early History 19
1.1 The Physical Characteristics of Infrasound 19
1.2 The Atmosphere as Medium of Propagation 20
1.3 The Propagation of Infrasound 23
1.4 The Early History of Infrasound 25
1.4.1 The Eruption of Krakatoa in 1883 25
1.4.2 The Great Siberian Meteor in 1908 and the First Microbarometer 28
1.4.3 The Shadow Zone Debate 30
1.4.3.1 The Effect of Composition or Wind? 30
1.4.3.2 The Siege of Antwerp During 1914 32
1.4.3.3 The Temperature in the Stratosphere 33
1.4.4 The Work of Victor Hugo Benioff and Beno Gutenberg 34
1.4.5 Infrasound and Nuclear Testing 35
1.5 The Current Era: Infrasound and the Signature of the CTBT 40
References 41
LePichon_Ch02.pdf 44
Chapter 2 44
The IMS Infrasound Network: Design and Establishment of Infrasound Stations 44
2.1 Introduction 44
2.2 The Global IMS Infrasound Network 45
2.3 Infrasound Monitoring Stations 50
2.4 Infrasound Sensors 51
2.5 Infrasonic Array Design 53
2.5.1 Spatial Aliasing of High Frequency Signals 55
2.5.2 Signal Correlation Between Array Elements 58
2.6 Background Noise 69
2.7 Concluding Remarks 85
2.8 Disclaimer 86
References 86
LePichon_Ch03.pdf 91
Chapter 3 91
Monitoring the Earth’s Atmosphere with the Global IMS Infrasound Network 91
3.1 Station Processing 92
3.1.1 Detection of Infrasound Signals 93
3.1.1.1 Detection Using Waveform Cross-Correlation 93
3.1.1.2 Consistency Used as a Threshold for Detection 94
3.1.1.3 Progressiveness 94
3.1.1.4 Data Quality Control 95
3.1.1.5 Postprocessing: Building PMCC Families 96
3.1.2 Feature Extraction of Infrasound Signals 98
3.1.2.1 Amplitude Determination 98
3.1.2.2 Station Noise Characterization 100
3.1.3 Detection Categorization and Phase Identification 101
3.1.3.1 Categorization on Individual Detections 102
3.1.3.2 Categorization on Clusters of Detections (Meta-Families) 103
3.1.3.3 Phase Identification 106
3.2 Network Processing 108
3.2.1 Building Candidate Seed Events 108
3.2.2 Fusion Between Different Waveform Technologies: Seismic, Infrasound, and Hydroacoustic 109
3.2.3 Limiting the Number of False Infrasound Associations 111
3.2.4 Atmospheric Modeling 112
3.3 Interactive Processing 116
3.3.1 Analysts’ Review Tool 117
3.3.2 Contribution of Infrasound Data to IDC Event Bulletin 117
3.3.2.1 Purely Infrasound Events 117
Rocket Launches and Re-Entries 117
Bolides 119
Volcanic Eruptions 120
Microbaroms 122
3.3.2.2 Mixed Technology Events 122
Earthquakes 122
Surface Explosions 126
3.3.2.3 Importance of Meteorological Data at the Station 128
3.3.2.4 Nondefining Infrasound Phases Associated to Events: Ix 128
References 131
LePichon_Ch04.pdf 133
Chapter 4 133
Low-Noise Broadband Microbarometers 133
4.1 Background 133
4.1.1 Self-Noise 133
4.1.2 Pressure Range 134
4.1.3 Dynamic Range 135
4.1.4 Environmental Constraints 135
4.1.5 Transfer Function 136
4.2 Absolute Infrasound Sensors 136
4.2.1 Principle of Operation, Mechanics 136
4.2.1.1 Aneroid Capsule 137
4.2.1.2 Measurement Cavity 139
4.2.1.3 Inlets and Noise Reducers 141
4.2.1.4 Full Sensor Acoustic Models 141
4.2.2 Transducers 142
4.2.2.1 Linear Variable Differential Transformer (LVDT) 142
4.2.2.2 Magnet and Coil Velocity Transducer 143
4.2.2.3 Quartz Crystal Resonator Stress Transducer 145
4.3 Differential Infrasound Sensors 145
4.3.1 Principle of Operation, Pressure Sensitive Part 146
4.3.2 Sensitive Mechanics 147
4.3.3 Transducers 147
4.3.3.1 Externally Polarized Capacitive Displacement Transducers 148
4.3.3.2 Prepolarized Capacitive Displacement Transducers 149
4.3.4 Piezoelectric-Based Transducers 150
4.3.4.1 Optical Motion Transducer 150
4.4 Other Infrasound Sensors 151
4.4.1 Liquid Microbarometer 151
4.4.2 Particle Velocity Sensors 152
4.5 Conclusions 153
References 153
LePichon_Ch05.pdf 155
Chapter 5 155
A Review of Wind-Noise Reduction Methodologies 155
5.1 Introduction 155
5.1.1 Importance of Infrasound in Science and Monitoring 155
5.1.2 Observations of Wind Noise During Measurements of Infrasound 156
5.2 Wind-Noise Theory 157
5.2.1 The Physics of Wind 157
5.2.2 Predicting Turbulence Potential from Meteorological Data 158
5.2.3 Geographic Influences on Wind 159
5.2.4 Taylor’s Hypothesis 161
5.2.5 Turbulence Length Scales and Noise Spectra 162
5.2.6 Types of Wind Noise 164
5.2.6.1 Wind Velocity Fluctuations 164
5.2.6.2 Interactions Between the Sensor and the Wind 164
5.2.6.3 Pressure Anomalies Advected Across the Sensor 165
Turbulence–Turbulence Interaction 165
Turbulence–Mean Shear Interaction 166
Correlation Distance of Turbulence 167
5.2.6.4 Acoustic Energy Generated by Wind 168
5.2.6.5 Distinguishing between Wind Noise Types 168
5.3 Wind-Noise Reduction Methodologies 170
5.3.1 Daniels Filter 171
5.3.2 Rosette Pipe Filters 172
5.3.3 Microporous Hoses 175
5.3.4 Optical Fiber Infrasound Sensor 178
5.3.5 Distributed Sensor (Adaptive Processing with a Dense Array) 182
5.3.6 Porous Media Filters 183
5.3.7 Wind Barriers 185
5.4 Discussion 189
5.5 Conclusions 192
References 193
Part2.pdf 197
LePichon_Ch06.pdf 198
Chapter 6 198
Worldwide Observations of Infrasonic Waves 198
6.1 Introduction 198
6.2 Observations of Infrasonic Waves at IMS Infrasound Stations 199
6.3 Natural Sources of Infrasound 201
6.3.1 Microbaroms 202
6.3.2 Mountain-Generated Infrasound 204
6.3.3 Auroral Infrasound 205
6.3.4 Infrasound from Meteorological Sources, Lightning and Sprites 206
6.3.5 Earthquakes 209
6.3.6 Meteors 213
6.3.7 Calving of Icebergs and Glaciers 214
6.3.8 Volcanic Eruptions 217
6.4 Man-Made Sources of Infrasound 226
6.4.1 Launching of Rockets and the Re-Entry of the Space Shuttle and Space Debris 226
6.4.2 Infrasound from Aircraft 227
6.4.3 Chemical Explosions 231
6.4.4 Nuclear Explosions 233
6.5 Practical Applications of Infrasonic Data 236
6.5.1 Tomography of the Upper Atmosphere 236
6.5.2 Geophysical Hazard Warning Systems 237
6.5.3 Observation of Meteors 238
6.5.4 Global Warming 238
6.5.5 Forensic Investigations 238
6.6 Concluding Remarks 239
6.7 Disclaimer 240
References 240
LePichon_Ch07.pdf 248
Chapter 7 248
Infrasonic Observations of Open Ocean Swells in the Pacific: Deciphering the Song of the Sea 248
7.1 Introduction 248
7.2 Background 249
7.3 Observations 251
7.4 General Approach 253
7.5 Concluding Remarks 258
References 259
LePichon_Ch08.pdf 262
Chapter 8 262
Generation of Microbaroms by Deep-Ocean Hurricanes 262
8.1 Introduction 262
8.2 Hurricane Monitoring and Modeling 263
8.3 Atmospheric Pressure Waves Produced by Ocean Waves 264
8.3.1 The Ocean Wave Frequency Spectrum 264
8.3.2 Ocean Waves as an Acoustic Transducer 266
8.3.2.1 A One-Sided Transducer 266
8.3.2.2 Application to Ocean Waves 268
8.3.3 Realistic Ocean Waves 270
8.4 The Microbarom Generation Region of Deep-Ocean Hurricanes 271
8.5 Conclusion 273
References 273
LePichon_Ch09.pdf 276
Chapter 9 276
Acoustic-Gravity Waves from Earthquake Sources 276
9.1 Introduction 276
9.2 Low-Frequency Acoustic-Gravity Waves from Earthquake Source 277
9.2.1 Observations 277
9.2.2 Theoretical Considerations on the Generation Mechanism of Low-Frequency Waves, and Their Waveform Modeling 279
9.2.3 Comparison Between the Recorded and Theoretical Barograms 281
9.2.4 Implications of Propagation of Low-Frequency Acoustic-Gravity Waves to Long Distances 284
9.3 Medium- to High-Frequency Infrasonic Waves from Earthquake Source 284
9.4 Ground – Coupled Atmospheric Pressure Perturbations 286
9.5 Atmospheric Gravity Waves Induced by Tsunami Waves 288
9.6 Summary 289
References 290
LePichon_Ch10.pdf 293
Chapter 10 293
Seismic Waves from Atmospheric Sources and Atmospheric/Ionospheric Signatures of Seismic Waves 293
10.1 Introduction 293
10.2 Theoretical Modeling of the Seismic Waves in the Neutral and Ionized Atmosphere 294
10.2.1 Solid Earth–Neutral Atmosphere Coupling 294
10.2.2 Neutral Atmosphere – Ionospheric Coupling 297
10.3 Observation and Inversions 300
10..3.1 Atmospheric Coupling at the Source 301
10.3.2 Ionospheric–Atmospheric Coupling of Seismic Waves 306
10.4 Ionospheric–Atmospheric Coupling of Tsunami Waves 310
10.5 Exporting Remote Sensing Seismology on Venus? 312
10.6 Conclusion 313
References 313
LePichon_Ch11.pdf 317
Chapter 11 317
Acoustic-Gravity Waves from Impulsive Sources in the Atmosphere 317
11.1 Atmospheric Modeling and the Acoustic-Gravity Wave (AGW) Spectrum 317
11.1.1 Introduction to the Atmospheric Medium 317
11.1.2 Key Environmental Parameters: Temperature/Sound Speed and Horizontal Wind Speed 318
11.1.3 AGW Resonant Frequencies and Relevant Spatial Scales 320
11.2 Atmospheric Wave Kinematics, Path Dynamics, and Inviscid Energetics 324
11.2.1 Underlying Physical AGW Regimes 324
11.2.1.1 Modeling Approaches for AGWs 325
11.2.2 Wave Normals and Ray Paths: Tracing the Trajectories of Infrasonic Waves 326
11.2.2.1 Meteoroid Wave Source Models: “Airwave” Objects 327
11.2.3 Resulting Wave Normal Paths 328
11.2.4 Wave Kinetic Energy Density Conservation 331
11.3 Impulsive Atmospheric Sources: Meteor-Fireballs (Bolides), Rockets, and Missiles, etc.: Systematic Analysis of their AGW 332
11.3.1 Meteor-Fireballs and Bolides as Sources 333
11.4 Meteor-Fireballs as a Wave Source 335
11.4.1 Entry Dynamics and Energetics 335
11.4.2 Top–Down, Direct Entry Approach 336
11.4.3 Bottom-Up, Inverse Entry Approach 340
11.4.4 Wave Source Parameters 342
11.4.5 Source Coupling to the Atmosphere: Hypersonic Flow Field Matching of the Pressure Wave Disturbances 345
11.5 Acoustic-Gravity Wave (AGW) Generation from Impulsive Atmospheric Sources 346
11.5.1 Previous AGW Modeling Efforts 346
11.5.2 Most Recent Acoustic-Gravity Wave (AGW) Modeling 346
11.5.3 AGW Results for Large and Distant Meteors 355
11.5.4 Results for Small, Quite Close Meteors 361
11.5.5 Generalized Results 361
11.6 Future Work 364
Appendix: Diffuse Shock Waves at High Altitudes in Isothermal and NonIsothermal Atmospheres 364
Meteor Source Energy Coupling to the Atmosphere: Line Source Blast Waves 365
Near-Field vs. Far-Field Wave Amplitude Behavior 366
Isothermal vs. Nonisothermal Atmospheric Relationships 368
References 369
LePichon_Ch12.pdf 372
Chapter 12 372
Meteor Generated Infrasound: Theory and Observation 372
12.1 Introduction and the History of Meteor Infrasound 372
12.2 A Primer on Single-Body Meteor Physics 377
12.3 Cylindrical Line Source Theory: Inhomogeneous Stratified Atmosphere 383
12.3.1 Meteor Generated Infrasound: The Cylindrical Line Source Approximation 383
12.3.2 Implementation of Cylindrical Line Source Theory 392
12.4 Regional Observations of Meteor Infrasound 397
12.4.1 Identification and Detection of Meteor Infrasound 397
12.4.2 Observations of Regional Meteor Infrasound 402
12.5 Long Range Observations of Meteor Infrasound 411
12.5.1 The Sources of Long Range Meteor Infrasound 411
12.5.2 Observations of Long-Range Meteor Infrasound 413
12.6 Conclusions 419
References 420
LePichon_Ch13.pdf 426
Chapter 13 426
High-latitude Observations of Infrasound from Alaska and Antarctica: Mountain Associated Waves and Geomagnetic/Auroral Infraso 426
13.1 Introduction 426
13.2 Mountain Associated Waves 427
13.2.1 MAW at I53US in Fairbanks, Alaska 428
13.2.2 MAW at I55US in Windless Bight, Antarctica 439
13.3 Auroral Infrasound Waves 446
13.3.1 AIW Bow Waves from Auroral Electrojet Motions 446
13.3.2 High Trace-Velocity GAIW Infrasound Signals 451
13.3.3 Simultaneous Observation of GAIW at both I53US in Alaska and I55US in Antarctica 460
13.3.4 Conclusion and Future Research 465
References 465
LePichon_Ch14.pdf 466
Chapter 14 466
Some Atmospheric Effects on Infrasound Signal Amplitudes 466
14.1 Infrasound Sources 466
14.2 The Influence of the Atmosphere 468
14.3 Quantifying the Effects of Wind on Infrasound Signals 472
14.4 The Los Alamos He Data Set 474
14.5 Determination of Wind Characteristics 478
14.6 Some Recent Studies Using IMS Data 483
14.7 Conclusions 483
References 484
LePichon_Ch15.pdf 486
Chapter 15 486
Atmospheric Variability and Infrasound Monitoring 486
15.1 Introduction 486
15.2 The Atmosphere and Infrasound Propagation 488
15.2.1 A History of Our Understanding of Acoustic Propagation 488
15.2.2 Application to Infrasound Propagation 490
15.3 Spatiotemporal Variability of the Atmosphere 493
15.3.1 Vertical Temperature Structure 494
15.3.2 General Circulation 495
15.3.3 Planetary Waves – Synoptic Scale Meteorology 498
15.3.4 Migrating and Nonmigrating Solar Tides 499
15.3.5 Gravity (Internal Buoyancy) Wave Spectrum 501
15.4 The Effect of the Atmosphere on Infrasound Monitoring: Case Studies 503
15.4.1 Temporal Variations in Signal Characteristics 503
15.4.2 Spatial Variations in Signal Characteristics 507
15.4.3 Spatial and Temporal Variations in Signal Characteristics 510
15.5 Discussion 510
References 514
Part3.pdf 519
LePichon_Ch16.pdf 520
Chapter 16 520
On the Prospects for Acoustic Sounding of the Fine Structure of the Middle Atmosphere 520
16.1 Introduction 520
16.2 Prospects for Using the Method of Acoustic Sounding to Study the Middle Atmosphere 523
16.3 Rapid Variations in Infrasonic Signals at Long Distances from Repeated Explosions 525
16.4 Partial Reflection of Infrasonic Pulses from Anisotropic Inhomogeneities in the Middle Atmosphere 534
16.5 On the Potential for Studying Anisotropic Turbulence in the Atmosphere Using the Acoustic Sounding Method 540
16.6 Conclusions 546
References 547
LePichon_Ch17.pdf 550
Chapter 17 550
Numerical Methods to Model Infrasonic Propagation Through Realistic Specifications of the Atmosphere 550
17.1 Introduction 550
17.2 Mean State of the Atmosphere 551
17.3 Fine-Scale Structure of the Atmosphere 555
17.4 Sound Speed and Moving Medium 558
17.5 Refraction 559
17.6 Diffraction 561
17.7 Absorption and Dispersion 565
17.8 Terrain 568
17.9 Full-Wave Models 572
17.10 Normal Modes 572
17.11 Time-Domain Parabolic Equation 573
17.12 Finite Difference Time Domain 574
17.13 Nonlinear Effects 576
17.14 Spectral Methods 577
17.15 Summary 578
References 579
LePichon_Ch18.pdf 583
Chapter 18 583
Misty Picture: A Unique Experiment for the Interpretation of the Infrasound Propagation from Large Explosive Sources 583
18.1 Introduction 583
18.2 The Misty Picture Experiment 584
18.3 Infrasonic Wave Propagation Modeling 587
18.3.1 Source 587
18.3.2 Atmosphere 589
18.3.3 Geometry and Earth Surface Modeling 590
18.3.4 Propagation Models 591
18.4 Infrasound Propagation Interpretation 592
18.4.1 Propagation Results 592
18.4.2 Diffraction and Scattering in Shadow Zones 596
18.4.3 Discussion 597
18.5 Pressure Signature Analysis 598
18.5.1 Waveform Evolution During the Propagation 598
18.5.2 Nonlinearity and Atmospheric Absorption 601
18.5.3 Discussion 602
18.6 Conclusion 603
References 604
LePichon_Ch19.pdf 607
Chapter 19 607
Ground Truth Events: Assessing the Capability of Infrasound Networks Using High Resolution Data Analyses 607
19.1 Infrasound and Ground Truth 607
19.2 Ground Truth Data–A Historical Perspective 609
19.3 Process of Obtaining Ground Truth 611
19.4 Ground Truth Examples 613
19.5 Common Propagation Paths 617
19.6 A Case Study: The Buncefield Oil Depot Explosion 620
19.6.1 Observations 621
19.6.2 Analysis Results 622
19.7 Future Considerations 629
19.8 Summary 630
References 630
Part4.pdf 634
LePichon_Ch20.pdf 635
Chapter 20 635
Contribution of Infrasound Monitoring for Atmospheric Remote Sensing 635
20.1 Introduction 635
20.2 Monitoring Ocean Swells for Continuous Stratospheric Wind Measurements 637
20.2.1 Deciphering the Song of the Oceans 637
20.2.2 Infrasound Globally Driven by the Stratospheric General Circulation 638
20.3 Multiyear Validation of Upper-Wind Models 640
20.3.1 Context and Observations 640
20.3.2 Propagation Modeling 642
20.4 How Infrasound can Probe High-Altitude Winds? 644
20.4.1 Where Models Fail to Explain the Observations 644
20.4.2 Inversion of Infrasound Measurements 645
20.5 Concluding Remarks 647
Appendix 648
References 650
LePichon_Ch21.pdf 653
Chapter 21 653
Global Scale Monitoring of Acoustic and Gravity Waves for the Study of the Atmospheric Dynamics 653
21.1 Introduction 653
21.2 Atmospheric Waves and Dynamics of the Atmosphere 654
21.2.1 Properties of Acoustic and Gravity Waves 654
21.2.2 Impact of Acoustic and Gravity Waves on the Atmosphere 655
21.3 Parameters Measured with Infrasound Arrays 657
21.4 Monitoring of the Atmospheric Wave Guide 658
21.5 Monitoring of Wave Activity 661
21.5.1 Gravity Waves in Antarctica 661
21.5.2 Effects of Thunderstorm Activity 664
21.6 Summary and Conclusions 666
References 667
LePichon_Ch22.pdf 671
Chapter 22 671
Dynamics and Transport in the Middle Atmosphere Using Remote Sensing Techniques from Ground and Space 671
22.1 General Circulation 671
22.2 Atmospheric Dynamics 674
22.2.1 Extratropical Dynamics 674
22.2.1.1 Rossby Planetary Waves 674
22.2.1.2 Stratospheric Warmings 675
22.2.2 Tropical Dynamics 676
22.2.2.1 Tape Recorder Effect 676
22.2.2.2 Tropical Planetary Waves 676
22.2.2.3 Quasi-Biennial Oscillation 677
22.2.2.4 Semiannual Oscillation 678
22.2.3 Gravity Waves, Mesospheric Inversions, and Tides 679
22.2.3.1 Internal Gravity Waves 679
22.2.3.2 Mesospheric Inversions 679
22.2.3.3 Thermal Tides 680
22.3 Ground-Based Remote Sensing Measurements 681
22.3.1 Rayleigh and Raman Lidars 681
22.3.2 Rayleigh Doppler Wind Lidar 682
22.3.3 MST Radar 684
22.4 Remote Sensing from Space 684
22.4.1 Infrared and Microwave Radiometers 684
22.4.2 GNSS Radio-Occultation 685
22.4.3 ADM-AEOLUS Doppler Wind Lidar 686
22.5 Conclusion 686
References 686
LePichon_Ch23.pdf 690
Chapter 23 690
The Representation of Gravity Waves in Atmospheric General Circulation Models (GCMs) 690
23.1 Introduction 690
23.2 The Different Parameterizations 693
23.2.1 Subgrid-Scale Orographic Drag 693
23.2.2 Orographic Lift 694
23.2.3 Nonorographic Waves 694
23.3 Impacts on GCMs Runs 695
23.3.1 Subgrid-Scale Orographic Parameterization and Lift 695
23.3.2 Nonorographic Gravity Waves Spectral Parameterization 697
23.3.2.1 Impacts in the midlatitudes 697
23.3.2.2 Impact on the Tropical Oscillations 698
23.4 Concluding Remarks 701
References 702
LePichon_Ch24.pdf 705
Chapter 24 705
Inversion of Infrasound Signals for Passive Atmospheric Remote Sensing 705
24.1 Introduction 705
24.2 Passive Acoustic Remote Sensing (Formalism) 707
24.3 Synthetic Data 710
24.3.1 Forward Model 712
24.3.2 Atmospheric Specifications 713
24.3.3 Infrasound Observables 715
24.4 Inverse Procedures (Details) 718
24.4.1 Atmospheric Basis Functions 718
24.4.2 Implementation and A Priori Information 720
24.4.3 Observational Weighting and Basis Set Truncation 721
24.4.4 Convergence 723
24.5 Results 724
24.6 Discussion 728
24.7 Conclusion 730
References 731
LePichon_Backmatter.pdf 736
Infrasound Monitoring for Atmospheric Studies 1
Preface 4
Foreword 6
Introduction 8
Contributors 13
Erscheint lt. Verlag | 19.1.2010 |
---|---|
Zusatzinfo | XIX, 735 p. 382 illus., 238 illus. in color. |
Verlagsort | Dordrecht |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Geowissenschaften ► Geologie |
Naturwissenschaften ► Physik / Astronomie ► Mechanik | |
Technik ► Umwelttechnik / Biotechnologie | |
Schlagworte | acoustic wave propogation • atmospheric dynamics • Barometer • Environmental monitoring • Fundament • infrasound • Inversion • Methodologie • Monitoring • Noise • Remote Sensing • scale • Signal Processing • Sound • Wave |
ISBN-10 | 1-4020-9508-2 / 1402095082 |
ISBN-13 | 978-1-4020-9508-5 / 9781402095085 |
Haben Sie eine Frage zum Produkt? |
Größe: 51,5 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich