Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Eutrophication: causes, consequences and control (eBook)

eBook Download: PDF
2010 | 2011
XIII, 394 Seiten
Springer Netherland (Verlag)
978-90-481-9625-8 (ISBN)

Lese- und Medienproben

Eutrophication: causes, consequences and control -
Systemvoraussetzungen
149,79 inkl. MwSt
(CHF 146,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Eutrophication continues to be a major global challenge to water quality scientists. The global demand on water resources due to population increases, economic development, and emerging energy development schemes has created new environmental challenges to global sustainability. Eutrophication, causes, consequences, and control provides a current account of many important aspects of the processes of natural and accelerated eutrophication in major aquatic ecosystems around the world. The connections between accelerated eutrophication and climate change, chemical contamination of surface waters, and major environmental and ecological impacts on aquatic ecosystems are discussed. Water quality changes typical of eutrophication events in major climate zones including temperate, tropical, subtropical, and arid regions are included along with current approaches to treat and control increased eutrophication around the world. The book provides many useful new insights to address the challenges of global increases in eutrophication and the increasing threats to biodiversity and water quality.
Eutrophication continues to be a major global challenge to water quality scientists. The global demand on water resources due to population increases, economic development, and emerging energy development schemes has created new environmental challenges to global sustainability. Eutrophication, causes, consequences, and control provides a current account of many important aspects of the processes of natural and accelerated eutrophication in major aquatic ecosystems around the world. The connections between accelerated eutrophication and climate change, chemical contamination of surface waters, and major environmental and ecological impacts on aquatic ecosystems are discussed. Water quality changes typical of eutrophication events in major climate zones including temperate, tropical, subtropical, and arid regions are included along with current approaches to treat and control increased eutrophication around the world. The book provides many useful new insights to address the challenges of global increases in eutrophication and the increasing threats to biodiversity and water quality.

Foreword 5
Preface 7
Contents 9
Contributors 11
1 Eutrophication and Climate Change: Present Situation and Future Scenarios 14
1.1 Preamble 14
1.2 The Wax and Wane of Lake and River Eutrophication 15
1.3 Evidence of Climate Change -- Does It Matter? 19
1.4 What Do We Know About Climate Impacts on Inland Waters? 20
1.5 Consequences of Climate Change for Inland Waters -- Future Scenarios 22
1.6 Concerns, Adaptation and Mitigation 25
1.7 Epilogue 26
References 26
2 Controlling Eutrophication in the Baltic Sea and the Kattegat 30
2.1 Background and Aim of the Work 30
2.2 Basic Information 33
2.2.1 Morphometric Data and Criteria for the Vertical Layers 35
2.2.2 Sediments and Bottom Dynamic Conditions 42
2.2.3 Trends and Variations in Water Variables 43
2.2.4 The Dilemma Related to Predictions of Cyanobacteria 47
2.2.5 The Reasons Why This Modeling Is Not Based on Dissolved Nitrogen or Phosphorus 48
2.2.6 The Reasons Why It Is Generally Difficult to Model Nitrogen 50
2.2.7 Comments and Conclusions 50
2.3 Water, SPM, Nutrient, and Bioindicator Modeling 51
2.3.1 Background on Mass Balances for Salt and the Role of Salinity 51
2.3.2 Water Fluxes 54
2.3.3 Mass Balances 56
2.3.3.1 Phosphorus Dynamics 56
2.3.4 SPM Dynamics 59
2.3.5 Nitrogen Fluxes 62
2.3.6 Predicting Chlorophyll-a Concentrations 64
2.3.7 Predicting Water Clarity and Secchi Depth 66
2.3.8 Conclusions 67
2.4 Management Scenarios 68
2.4.1 Reductions in Tributary Phosphorus Loading to the Baltic Sea 69
2.4.2 Reductions in Tributary Phosphorus Loading to the Kattegat from Sweden 71
2.4.3 Reductions in Tributary Nitrogen Loading to the Kattegat from Sweden 71
2.4.4 An ''Optimal'' Management to Reduce the Eutrophication in the Kattegat 71
2.4.5 Effective and Cost-Effective Nutrient Reductions 73
2.4.6 Comments and Conclusions 75
2.5 Summary and Recommendations 76
References 78
3 Eutrophication Processes in Arid Climates 81
3.1 Introduction 81
3.1.1 Eutrophication Process 81
3.1.1.1 Natural Eutrophication 82
3.1.1.2 Eutrophication by Human Activities 82
3.1.2 Eutrophication Classification 82
3.1.2.1 Oligotrophic 82
3.1.2.2 Mesotrophic 82
3.1.2.3 Eutrophic 82
3.1.2.4 Dystrophic 82
3.1.3 Causes of Eutrophication and Supporting Factors 82
3.1.3.1 Nutrients 83
3.1.3.2 Availability of Nutrients 83
3.1.3.3 Factors Supporting the Development of Eutrophication 84
3.1.3.4 Sources of Nutrients 84
3.1.4 Effects of Eutrophication 84
3.1.5 Trihalomethanes 86
3.1.5.1 Disinfection 86
3.1.5.2 Natural Organic Matter (NOM) 87
3.1.5.3 Trihalomethanes 87
3.1.5.4 THM Formation Potential 88
3.1.6 Control of Disinfection By-product 88
3.1.6.1 Organic Precursor Removal 88
3.1.7 King Abdullah Canal (KAC): A Case Study 91
3.1.7.1 Introduction 91
3.1.7.2 The Study Area 92
3.1.7.3 Results 93
3.1.8 Conclusions 101
References 101
4 Eutrophication and Restoration of Shallow Lakes from a Cold Temperate to a Warm Mediterranean and a (Sub)Tropical Climate 103
4.1 Shallow Lakes 103
4.2 North Temperate "Cold Shallow Lakes" 104
4.2.1 Alternative Stable States 104
4.2.2 Role of Vegetation 106
4.2.3 Eutrophication 107
4.3 Shallow Lakes in Different Climatic Regions 107
4.3.1 Functioning and Eutrophication of Mediterranean Shallow Lakes 108
4.3.2 Functioning and Eutrophication of Subtropical and Tropical shallow Lakes 110
4.3.3 Role of Vegetation in Mediterranean and (Sub)Tropical Shallow Lakes 112
4.4 Restoration of Eutrophicated Cold and Warm Shallow Lakes 112
4.4.1 Biological Methods 113
4.4.1.1 Fish Manipulation 113
4.4.1.2 Protection of Submerged Plants and Transplantation 115
4.4.1.3 Combating Nuisance Plant Growth 115
4.4.2 Physico-Chemical Methods 115
4.5 Climate Change Gives Future Challenges 116
References 117
5 Trophic State and Water Quality in the Danube Floodplain Lake (Kopacki Rit Nature Park, Croatia) in Relation to Hydrological Connectivity 121
5.1 Introduction 121
5.2 Study Area 122
5.3 Sediment Biota (Research Review 1997--2002) 122
5.4 Hydrological Regime (2002--2005) 124
5.5 Water Quality Parameters 127
5.5.1 Phytoplankton Chlorophyll 128
5.5.2 Bacterial Abundance 128
5.6 Primary Productivity 129
5.7 Trophic State in Relation to Hydrological Connectivity 129
5.8 Nutrient Enrichment Bioassay 131
5.9 Weed-Bed Invertebrates Characterize Trophic State 134
5.10 Occurrence of Invasive Invertebrates 136
5.11 Conclusion Remarks and the Basis for Future Research 137
References 138
6 Mediterranean Climate and Eutrophication of Reservoirs: Limnological Skills to Improve Management 142
6.1 Introduction 142
6.2 Effects of the Mediterranean Climate and Insularity on Eutrophication Patterns in Sicily 144
6.2.1 Top-Down Effects Caused by Water-Level Fluctuations 144
6.2.2 Bottom-Up Effects Caused by Water-Level Fluctuations 145
6.3 Phosphorus Loadings in Sicilian Reservoirs 148
6.4 Consequences of Eutrophication on Public Health 148
6.5 Eco-friendly Procedures to Control Eutrophication and Their Effectiveness 150
6.6 Conclusion 151
References 151
7 Eutrophication: Threat to Aquatic Ecosystems 154
7.1 Water 154
7.2 Eutrophication 155
7.3 Eutrophication: A Global Scenario 156
7.4 Nutrients in Aquatic Ecosystems 159
7.5 Eutrophication and Aquatic Environment 161
7.6 Eutrophication and Aquatic Biodiversity 163
7.7 Eutrophication in Wetland Ecosystems 167
7.8 Biological Monitoring and Impact Assessment 169
7.9 Biological Restoration of Eutrophic Waters 173
7.10 Engineered and Technological Correctives 174
References 176
8 Eutrophication Problem in Egypt 182
8.1 Introduction 182
8.2 Abu Qir Bay 185
8.3 Eastern Harbour 189
8.4 Western Harbour 193
8.5 Dekhaila Harbour 196
8.6 Mex Bay 199
8.7 Conclusions 201
References 201
9 Freshwater Wetland Eutrophication 206
9.1 Introduction 206
9.2 The Wetland Hydroperiod and Nutrient Transformations 207
9.2.1 Biogeochemical Transformations in Wetlands Under Anaerobic Conditions 208
9.2.2 Nitrogen and Phosphorus Cycling in Wetlands 209
9.3 Main Nutrient Sources to Wetlands: External Load vs. Internal Load 211
9.4 Biogeochemical Responses of Wetlands to Nutrient Enrichment 212
9.5 The Biological Effects of Wetland Eutrophication: Community Structure, Alternative Stable States, and Trophic Cascades 214
9.6 Biomanipulation of Wetlands as a Tool for Eutrophication Mitigation 215
9.7 Conclusion 218
References 218
10 Effects of Contamination by Heavy Metals and Eutrophication on Zooplankton, and Their Possible Effects on the Trophic Webs of Freshwater Aquatic Ecosystems 222
10.1 Introduction 222
10.2 Methodology 223
10.3 Results 225
10.3.1 Environmental Context 225
10.3.2 Zooplankton Structure 228
10.3.2.1 Abundance 228
10.3.2.2 Biomass 229
10.3.2.3 Species Richness and Species Diversity 229
10.4 Discussion 230
10.4.1 Integrating Possible Effects of Eutrophication and Heavy Metal Contamination on the Trophic Webs of Freshwater Ecosystems 231
10.5 Summary 233
References 233
11 Impact of Eutrophication on the Seagrass Assemblages of the Mondego Estuary (Portugal) 235
11.1 Introduction 235
11.2 Case Study: The Mondego Estuary 236
11.2.1 Anthropogenic Pressures 237
11.2.2 Eutrophication in the South Arm 237
11.2.3 Management Measures to Control Eutrophication 237
11.3 Materials and Methods 237
11.3.1 Sampling Programme and Laboratory Procedures 237
11.3.2 Macrobenthic Feeding Guild Assignments 238
11.3.3 Secondary Production 238
11.4 Results 238
11.4.1 Climate 238
11.4.2 Nutrient Dynamics 239
11.4.3 Primary Producers 239
11.4.4 Macrofauna Community General Trends 240
11.4.4.1 Changes in Diversity 240
11.4.4.2 Changes in Density, Biomass and Production 241
11.4.4.3 Feeding Guilds Relative Composition 243
11.4.5 Species-Specific Responses 245
11.4.5.1 Hydrobia ulvae (Gastropoda) 245
11.4.5.2 Cyathura carinata (Isopoda) 245
11.4.5.3 Scrobicularia plana (Bivalvia) 246
11.4.5.4 Hediste diversicolor (Polychaeta) 247
11.4.5.5 Alkmaria romijni and Capitella capitata (Polychaeta) 247
11.5 Discussion 248
11.5.1 Eutrophication Effects 248
11.5.1.1 Macroalgal Bloom Dynamics in the Eutrophic Area 250
11.5.2 Differences Between Sites 253
11.5.3 Pre-mitigation versus Post-mitigation Periods 253
11.5.4 Evaluation of the Ecosystem Recovery 254
References 255
12 Aquatic Plant Diversity in Eutrophic Ecosystems 257
12.1 Introduction 257
12.2 Plant Diversity: Eutrophic Ecosystems 259
12.2.1 Phytoplankton Diversity 260
12.2.2 Macrophyte Diversity 260
12.2.3 Wetland Diversity 261
12.3 Plant Diversity: Nutrient Limitations 262
12.4 Plant Diversity: Environmental Factors 262
12.5 Plant Diversity: Succession Pathways 263
12.6 Plant Diversity: Assessment and Monitoring 264
12.7 Plant Diversity: Indicator of Eutrophication 264
12.8 Plant Diversity: Measurements 265
12.8.1 Frequency 265
12.8.2 Density 265
12.8.3 Abundance 266
12.8.4 Diversity Indices 266
12.9 Discussion 267
References 269
13 Linking Anthropogenic Activities and Eutrophication in Estuaries: The Need of Reliable Indicators 274
13.1 Introduction 274
13.1.1 Estuaries and Salt Marshes 275
13.1.2 Nutrient Loading and Plant Responses 276
13.1.3 The Selection of Indicators 276
13.1.4 Scope and Goals 277
13.2 General Approach 278
13.2.1 Study Areas 278
13.2.2 Eutrophication Status: Comparison Between Estuaries 279
13.2.3 Historical Nutrient History 280
13.3 Results and Discussion 281
13.3.1 Eutrophication Status: Comparison Between Estuaries 281
13.3.1.1 Nitrogen and Carbon Concentrations 281
13.3.1.2 Plant Aboveground Biomass 283
13.3.1.3 Nitrogen Stable Isotopes 285
13.3.2 Historical Nutrient History 285
13.4 Concluding Remarks 288
References 288
14 Successful Restoration of a Shallow Lake: A Case Study Based on Bistable Theory 294
14.1 Defining the Problem 294
14.2 The Theory of Stable States -- Reloaded 295
14.3 The Study Site 296
14.3.1 What Happened? Causes of Change 296
14.3.2 How to Restore? The Concept of Remediation 298
14.4 Conclusions from a Successful Story 301
References 302
15 Biomanipulation in Lake 0rungen, Norway: A Tool for Biological Control 304
15.1 Introduction 305
15.1.1 Why Lake Biomanipulation? 305
15.1.2 Increased Piscivory: A Target of Biomanipulation 306
15.1.3 Prey Fish Behavior: A Role of Piscivory 307
15.1.4 Effects of Biomanipulation on Pollutants 307
15.1.4.1 Mercury 307
15.1.4.2 Persistent Organic Pollutants (POPs) 307
15.1.5 Aims and Objectives 308
15.1.6 Study Area 308
15.2 Materials and Methods 310
15.2.1 Exploitation of Large Pike and Its Population Recruitment 310
15.2.2 Relative Abundance and Habitat Use of Perch and Roach 311
15.2.3 Diet Analysis 312
15.2.4 Food Web Analysis Using Stable Isotopes of Nitrogen and Carbon 312
15.2.5 Total Mercury Concentrations and Its Transfer Patterns 312
15.2.6 Persistent Organic Pollutants (POPs) 313
15.3 Results 313
15.3.1 Recruitment of Pike After Population Manipulation 313
15.3.2 Relative Abundance and Habitat Use 313
15.3.3 Diets and Food Web Structure 315
15.3.4 Hg Concentrations and Biomagnification 315
15.3.5 Organochlorine Compounds and Their Biomagnification 317
15.4 Discussion 318
15.5 Main Conclusions 325
References 327
16 Reasons and Control of Eutrophication in New Reservoirs 333
16.1 Introduction 333
16.2 Reasons of Eutrophication Occurring in New Built Reservoirs 334
16.2.1 Natural Factors and the Hydrodynamic Conditions 335
16.2.2 The Nutrient Concentrations in Reservoirs 336
16.2.3 The Structure of the Ecosystem in Reservoir 337
16.3 Water Quality Variation and Eutrophication in New Reservoirs (Take the Three Gorges Reservoir and Laohutan Reservoir as an Illustration) 338
16.3.1 The Three Gorges Reservoir 338
16.3.1.1 Changes of Hydrodynamic Character After the Water Storage in the Three Gorges Reservoir 338
16.3.1.2 The Change of Water Quality in Three Gorges Reservoir Before and After Impounding 338
16.3.1.3 The Dynamic Variation of the Aquatic Community 339
16.3.2 The Laohutan Reservoir 340
16.3.2.1 Assessment of Inflow Water Quality and Soil Before Water Storage 340
16.3.2.2 Water Quality Variation and Eutrophication Mechanism of Laohutan Reservoir 340
16.3.2.3 Result and Discussion 344
16.3.3 Comparison of the Similar Reservoirs 344
16.3.3.1 Comparison of the New Reservoir with an Old One 344
16.3.3.2 Comparison of Two New Reservoirs 345
16.4 Control Methods of Eutrophication 345
16.4.1 Reducing the Importing Nutrients 345
16.4.1.1 Industrial Pollution Control 345
16.4.1.2 Agricultural Pollution Control 345
16.4.1.3 Domestic Pollution Control 346
16.4.2 Endogenous Nutrients Control 346
16.4.2.1 Biological Measures 346
16.4.2.2 Engineering Measures 346
16.4.3 Construction of a Stable Ecosystem 346
16.4.4 Ecological Scheduling of Reservoir 347
16.4.5 Water Quality Monitoring 347
References 347
17 Plant Nutrient Phytoremediation Using Duckweed 349
17.1 Introduction and Background of Duckweed 349
17.2 Duckweed for Phytoremediation of Contaminated Waters 351
17.2.1 As an Alternative Means of Wastewater Treatment 351
17.2.2 As a Means of Removing Heavy Metals and Other Toxic Elements in Waters 353
17.2.3 As a Means of Removing Toxic Organic Compounds from Wastewater 354
17.3 Duckweeds Other Practical Application 354
17.3.1 As a Source of Livestock Feed 354
17.3.2 As an Inexpensive and Accurate Way of Toxicity Testing 356
17.3.3 Miscellaneous Uses 356
17.4 Summary 357
References 358
18 Nitrogen Removal from Eutrophicated Water by Aquatic Plants 363
18.1 Introduction 363
18.2 Sources of N in Natural Aquatic Ecosystems 364
18.3 N Uptake by Aquatic Plants 365
18.3.1 NO3-- Uptake 365
18.3.2 NH4+ Uptake 365
18.3.3 NHx Toxicity 367
18.3.4 Aquatic Plants Preferences in Taking up NO3-- or NH4+ 368
18.3.5 Root Versus Shoot N Uptake 369
18.4 Aquatic Plants and N Removal Efficiency in Eutrophic Aquatic Ecosystems 370
18.4.1 Contribution of Aquatic Plants to N Removal 370
18.4.1.1 Temperature Effect 370
18.4.1.2 Light Effect 373
18.4.1.3 Seasonality 373
18.4.1.4 N Loading 373
18.4.1.5 pH Effect 373
18.4.1.6 Hydraulic and Organic Loading and Retention Time 374
18.4.1.7 Best/Worst Performers Among Plant Species 374
18.4.1.8 Effect of Other Nutrient on Capacity of Aquatic Plants to Remove N 375
18.4.2 Aquatic Plants Improvement of the Eutrophic Aquatic Ecosystems 375
18.5 Conclusions 376
References 376
19 Accelerated Eutrophication in the Mekong River Watershed: Hydropower Development, Climate Change, and Waterborne Disease 381
19.1 Introduction: A Brief History of Dam Building in Southeast Asia 381
19.1.1 The Nexus of Hydropower Development, Climate Change, Accelerated Eutrophication, and waterborne disease 382
19.2 Mekong River Habitat Ecology -- Benchmark Studies of Pre-impoundment Conditions 383
19.2.1 Study Areas 383
19.2.1.1 Threats to Biological Water Quality -- Cyanotoxins and Schistosomiasis 385
19.2.2 Hydropower Projects, Accelerated Eutrophication, Water Quality, and Waterborne Disease Transmission 385
19.2.2.1 General Habitat Dynamics 385
19.3 Using the Benchmark Studies to Predict Accelerated Eutrophication Impacts from Dam Impoundments 391
19.4 Summary 393
References 393
Index 395

Erscheint lt. Verlag 17.10.2010
Zusatzinfo XIII, 394 p.
Verlagsort Dordrecht
Sprache englisch
Themenwelt Naturwissenschaften Biologie Botanik
Naturwissenschaften Biologie Ökologie / Naturschutz
Naturwissenschaften Geowissenschaften Geologie
Technik Bauwesen
Technik Umwelttechnik / Biotechnologie
Schlagworte Aquatic Botany • Aquatic Plants • eutrophication • Water pollution • Water Quality and Water Pollution
ISBN-10 90-481-9625-6 / 9048196256
ISBN-13 978-90-481-9625-8 / 9789048196258
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 15,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Der Baum des Lebens in neuem Licht – Eine Monographie

von Fred Hageneder

eBook Download (2024)
Neue Erde (Verlag)
CHF 28,30
Wie wir den globalen Angriff auf unsere mentale Freiheit erfolgreich …

von Dr. med. Michael Nehls

eBook Download (2023)
BookRix (Verlag)
CHF 16,60