Ultrasound Technologies for Food and Bioprocessing (eBook)
XII, 668 Seiten
Springer New York (Verlag)
978-1-4419-7472-3 (ISBN)
Traditional food and bioprocessing technologies are facing challenges due to high expectation from the consumers and producers for better quality and safety, higher process efficiency, and products with novel properties or functionalities. For this reason, in the last few years new forms of physical energies have been explored to propose alternatives to traditional processing technologies. Acoustic energy has the potential to replace or partially substitute conventional processes, and at the same time offer unique opportunities in the characterization of foods and biomaterials. This book is a resource for experts and newcomers in the field of power ultrasound, gives insights into the physical principles of this technology, details the latest advancements, and links them to current and potential applications in the food and bioprocessing related industries.
Preface 5
Contents 7
Contributors 9
1 The Physical and Chemical Effects of Ultrasound 13
1 Introduction 13
2 Physical Effects of Ultrasound 14
3 Chemical Effects 19
4 Conclusions 22
References 23
2 Acoustic Cavitation 25
1 Introduction 25
2 The Quiet Bubble 26
2.1 A Key Phenomenon: Surface Tension 26
2.2 Bubble Ambient Radius 26
2.3 Radial Mechanical Stability: The Blake Threshold 27
2.4 Perturbations of Radial Equilibrium: Free Frequency 28
2.5 Gas Exchange with the Liquid 29
2.6 Translational Motion 30
2.7 Departure from Spherical Shape 30
3 The Forced Spherical Single Bubble 30
3.1 Introduction 30
3.2 Radial Oscillations 31
3.2.1 Rayleigh--Plesset Equations 31
3.2.2 Effects of Liquid Compressibility 32
3.2.3 Linear Oscillations 32
3.2.4 Non-linear Oscillations 34
3.2.5 Dynamical Blake Threshold 35
3.2.6 Inertial Oscillations 37
3.2.7 The Bubble Collapse 37
3.3 Thermal Effects in the Bubble 38
3.3.1 The Physics 38
3.3.2 Linear Oscillations 39
3.3.3 Non-linear Oscillations 40
3.3.4 Inertial Bubbles 40
3.3.5 Solvent Evaporation and Condensation 41
3.3.6 Relevance to Sonochemistry 42
3.3.7 Measuring Cavitation Temperatures 43
3.4 Rectified Diffusion 43
3.4.1 The Physics 43
3.4.2 Rectified Diffusion Threshold 44
3.4.3 Bibliography 44
3.4.4 Merging of the Blake and Rectified Diffusion Thresholds for Small Bubbles 46
4 Non-spherical Oscillations 48
4.1 Introduction 48
4.2 Shape Instabilities 48
4.3 Stability Thresholds 49
4.4 Self-Propulsion of Non-spherical Bubbles 51
4.5 Non-spherical Collapses Near Boundaries and Erosion 51
4.6 Non-spherical Collapses Far from Boundaries 52
5 Cavitation Fields 53
5.1 Acoustics 53
5.1.1 Equation of Linear Acoustics 53
5.1.2 Energy Conservation: Non-dissipative Acoustics 54
5.1.3 Energy Conservation and Dissipation: Calorimetric Method 55
5.1.4 Acoustics of Bubbly Liquids 56
5.2 Nucleation of Bubbles 57
5.3 Forces Exerted on the Bubbles 58
5.3.1 Primary Bjerknes Force 58
5.3.2 Secondary Bjerknes Force 59
5.3.3 Added Mass and Viscous Drag Force 61
5.4 Bubble Structures 61
5.4.1 Streamers and Filaments 62
5.4.2 Bubble Layers: The Jellyfish and the Starfish 62
5.4.3 Clusters 62
5.4.4 Sonotrode Cavitation and Conical Structures 63
5.4.5 Bubble Sizes and Lifetimes 63
5.5 How to Simulate Cavitation Fields 64
5.5.1 The Unknowns 64
5.5.2 Continuum Approach 64
5.5.3 Particle Models 65
6 Final Remarks 65
6.1 Topics Not Addressed 65
6.2 Further Readings 66
Notations 67
Subscripts 69
References 69
3 Ultrasound Applications in Food Processing 77
1 Introduction 77
2 General Principles 78
2.1 Overview of Ultrasonic Equipment 81
2.1.1 Electrical Generator 81
2.1.2 Transducer 87
2.1.3 Emitter (Baths, Horns, and Sonotrodes) 87
2.1.4 Examples of Ultrasound Systems in Food Processing 87
2.2 High-Versus Low-Intensity Ultrasound 88
2.2.1 Overview of Low-Intensity ''Non-destructive'' Ultrasound 89
2.2.2 Overview of High-Intensity ''Power'' Ultrasound 90
3 Power and Energy 90
3.1 Vibrational Amplitude 91
3.2 Power Intensity 92
3.3 Frequency 92
3.4 Temperature 93
3.5 Effects of High-Power Sonication 93
3.6 Cavitation 94
3.6.1 Inertial Versus Non-inertial Cavitation 94
4 Microbial and Enzyme Inactivation in Food Using Ultrasound 95
4.1 Microorganisms 96
4.1.1 Mode of Action of Ultrasound in Microorganisms 102
4.2 Enzymes 103
4.2.1 Mode of Action of Ultrasound in Enzyme Inactivation 105
5 Other Applications of Ultrasound in Food Processing 105
5.1 Quality Assurance 106
5.1.1 Cheese and Tofu Manufacturing 106
5.1.2 Beverages 107
5.1.3 Bread 107
5.1.4 Product Identification 108
5.2 Thawing/Freezing/Crystallization 109
5.3 Extraction 109
5.4 Cleaning 110
5.5 Other Applications 111
6 Final Remarks 113
References 113
4 The Thermodynamic and Kinetic Aspects of Power Ultrasound Processes 118
1 Introduction 118
2 Abnormality in Thermo-sonication Inactivation 119
3 Non-equilibrium Thermodynamic Theory for Biological Systems 121
4 Cut-Off Temperature for Thermo-sonication Inactivation 125
5 A Note on Inactivation Kinetics 126
5.1 First-Order Kinetic Models 127
5.2 Non-linear Inactivation Models 129
References 131
5 Wideband Multi-Frequency, Multimode, and Modulated (MMM) Ultrasonic Technology 135
1 Introduction 135
2 Background and Relevant Theories 136
2.1 Closed-Loop Control 136
2.2 Phase-Locked Loop 138
2.3 Pulse-Width Modulation (PWM) in Power Electronics 138
3 MMM System and How the MMM System Operates 139
3.1 System Components 139
3.2 Operation Mechanisms 140
3.2.1 Open-Loop Problems 141
3.2.2 Benefits of the Feedback Loop 141
3.2.3 Real-Time Load Parameter Estimation 142
3.2.4 Band-Limited Hilbert Transformer 144
3.2.5 Maximum Active Power Tracking 144
4 Application of MMM Technology 146
4.1 Ultrasonic Cleaning with MMM Technology 146
4.2 Ultrasonic Treatments and Screening Using MMM Technology 147
4.3 Ultrasonic Powder Sieving and Seed Processing 148
4.4 Ultrasonic Drawing and Extruding 148
5 Conclusions 150
References 150
6 Application of Hydrodynamic Cavitation for Food and Bioprocessing 151
1 Introduction 151
2 Generation of Hydrodynamic Cavitation 152
3 Design of Hydrodynamic Cavitation Reactors 153
3.1 Hydrodynamic Cavitation Reactor Configurations 153
3.1.1 Liquid Whistle Reactors 154
3.1.2 High-Pressure Homogenizer (HPH) 154
3.1.3 High-Speed Homogenizer (HSH) 155
3.1.4 Microfluidizers 156
3.1.5 Orifice Plates Setup 157
3.2 Optimization of Hydrodynamic Cavitation Reactors Using Bubble Dynamics Studies 159
3.2.1 Single Cavity Approach 160
3.2.2 Improvement in the Bubble Dynamics Model Considering Bubble/Bubble and Bubble/Flow Interactions 162
3.2.3 Simulations on the Basis of a Liquid Continuum Mixture Model 163
3.2.4 Cluster Approach 164
3.3 Development of Correlations for Cavitational Yield 166
4 Analogies and Comparison with Acoustic Cavitation 167
4.1 Analogy with Acoustic Cavitation 167
4.2 Comparison with Acoustic Cavitation Reactors 168
5 Overview of Applications of Hydrodynamic Cavitation 169
5.1 Cell Disruption Using Hydrodynamic Cavitation 169
5.2 Microbial Disinfection Using Hydrodynamic Cavitation 175
6 Recommendations for Future Work 178
7 Concluding Remarks 179
References 180
7 Contamination-Free Sonoreactor for the Food Industry 184
1 Summary 184
2 Introduction 184
3 The Known Industrial Sonoreactors 185
4 An Exclusive Sonoreactor System 186
5 Using Cylindrical Converging Waves 187
6 Operating Under Pressure 189
7 The Actual Systems 190
8 The Powerful Effects of Confined Acoustic Cavitation 192
9 Processing Conditions and Versatility 194
10 Efficiency 195
11 Processing Capacity 196
12 Costs of Operation 197
13 Conclusion 197
References 198
8 Controlled Cavitation for Scale-Free Heating, Gum Hydration and Emulsification in Food and Consumer Products 200
1 How Cavitation Is Produced in the SPR 202
2 Scale-Free Heating 204
3 Mixing 207
4 Pasteurization 207
5 Gum/Gel Hydration 210
6 Emulsification 210
7 Aeration 211
8 Mixing Thick Liquids 212
9 Case Study of Cavitation Using the SPR 212
10 UV Light Using Cavitation in the SPR 213
11 Conclusions 217
References 217
9 Ultrasonic Cutting of Foods 220
1 Introduction 220
2 Cutting in Food Processing 221
2.1 The Principle of Conventional Cutting 222
2.2 Ultrasonic Cutting 224
2.3 Ultrasound-Induced Modifications of the Cutting Process 226
2.3.1 Fracture Modification 226
2.3.2 Modification of Friction 228
2.3.3 Secondary Effects 229
3 Practical Aspects of Ultrasonic Cutting of Foods 230
3.1 Impact of Material Properties 233
3.1.1 Material Properties and Cutting Performance 233
3.1.2 Material Properties and Secondary Effects 237
3.2 Impact of Cutting Parameters 238
3.2.1 Ultrasonic Parameters 238
3.2.2 Cutting Movement 240
3.3 Impact of Design Parameters 241
4 Synopsis 242
Notation 243
References 244
10 Engineering Food Ingredients with High-Intensity Ultrasound 247
1 Introduction 247
2 Fundamental Sonochemistry with a Focus on Aqueous Systems Containing Organic Compounds 248
2.1 Cavitation Drives Chemical Reactions 248
2.2 Basic Sonochemical Reactions 250
2.2.1 Sonochemistry in Homogeneous Systems 252
2.2.2 Heterogeneous Sonochemistry 256
2.2.3 Summary 259
3 Effect of Ultrasound on the Functional Properties of Food Ingredients 260
3.1 Engineering Protein Functionality by High-Intensity Ultrasound 260
3.1.1 Introduction 260
3.1.2 Protein Solubility 260
3.1.3 Protein Interfacial Activity 261
3.1.4 Emulsion Stabilization 262
3.1.5 Foam Stabilization 264
3.1.6 Protein Thickening 265
3.1.7 Protein Gelation 265
3.1.8 Enzyme Activity 266
3.1.9 Structural Basis of Observed Modifications of Protein Functionalities 269
3.2 Engineering Polysaccharide Functionality by High-Intensity Ultrasound 271
3.2.1 Introduction 271
3.2.2 Solubility 273
3.2.3 Polysaccharide Reactivity 274
3.2.4 Thickening 276
3.2.5 Gelation 278
3.2.6 Digestibility 278
3.2.7 Immunology 279
3.3 Lipids 279
3.3.1 Introduction 279
3.3.2 Lipid Crystallization 280
3.3.3 Oxidative Stability and Rancidity Development 282
3.3.4 Fatty Acid Composition 282
4 Conclusions 283
References 285
11 Manothermosonication for Microbial Inactivation 294
1 Introduction 294
2 Lethal Effect of Ultrasonic Waves Under Pressure 295
2.1 MS/MTS Microbial Inactivation Kinetics 296
2.2 Microbial MS/MTS Resistance 299
3 Effect of Physical Parameters on the MS/MTS Lethal Effect 301
3.1 Effect of the Amplitude of Ultrasonic Waves 302
3.2 Effect of Hydrostatic Pressure 303
3.3 Effect of Temperature 305
3.4 Interactions 308
4 Environmental Factors Affecting Bacterial MS/MTS Resistance 309
4.1 Factors Prior to Treatment 309
4.2 Factors Simultaneous to Treatment 312
4.3 Summary 314
5 MS/MTS Bacterial Inactivation Mechanisms 315
6 Control of MS/MTS Industrial Processes 318
7 Concluding Remarks 320
References 321
12 Inactivation of Microorganisms 327
1 Introduction 327
2 Mechanisms of Action of Ultrasound 328
3 Combinations with Other Hurdles 337
3.1 Ultrasound and Mild Heating 338
3.2 Ultrasound and Chemicals 340
3.3 Ultrasound and ''Non-thermal'' Physical Factors 345
4 Future Prospects 346
References 347
13 Ultrasonic Recovery and Modification of Food Ingredients 350
1 Basic Mechanisms 350
1.1 Physical Effects of Sound on Fluids 350
1.2 Bubble Acoustics and Cavitation 350
1.2.1 Fundamentals of Bubble Acoustics 350
1.2.2 Cavitation 352
1.2.3 Nonlinearity and Collapse 353
1.3 Streaming Phenomena 353
1.3.1 General Streaming Phenomena 353
1.3.2 Sound Radiation Pressure on a Sphere 355
1.3.3 Separation of Particles Much Smaller than the Wavelength and Larger than About a 100m 356
1.4 Acoustic Microstreaming 357
2 Practical Ultrasonic Separation 357
3 Ultrasonic Extraction 360
3.1 Background Introduction 360
3.2 Extraction Mechanisms and Process Development 360
3.3 Extraction Process for Functional Compounds 362
3.4 Opportunities for Food Industry 363
3.5 Separation of Extracted Components 365
3.6 Industrial Extraction Application and Design 366
4 Simultaneous Extraction and Modification 368
4.1 Extraction and Molecular Weight Reduction of Polymeric Materials 368
4.2 Extraction and Modification of Antioxidant Capacity and/or Color 370
4.3 Extraction and Encapsulation 370
References 371
14 Ultrasound in Enzyme Activation and Inactivation 374
1 Basic Principles 374
2 Denaturation of Proteins by Applied Force 376
3 Physical Effects 377
4 Sonochemical Effects 378
5 Kinetic Considerations 379
5.1 Activation 392
5.2 Inactivation 394
6 Formation of Aggregates 394
7 Breakdown of Oligomers 395
7.1 Dimeric Enzymes 395
7.2 Tetrameric Enzymes 396
7.3 Homohexameric Enzymes 396
8 Changes in Secondary Structure 397
9 Changes in Primary Structure 397
10 Mode of Action 397
10.1 Free Radicals-Related Effects on Enzymes 397
10.2 Physical Effects of Sonication on Enzymes 398
11 Medium-Related Factors Affecting Ultrasonic Inactivation of Enzymes 399
11.1 Ultrasound Application 399
11.2 Temperature 400
11.3 Air 400
11.4 Enzyme Concentration 401
11.5 pH 401
11.6 Co-Solutes 402
11.7 Antioxidants/Free Radical Scavengers 403
References 403
15 Production of Nanomaterials Using Ultrasonic Cavitation A Simple, Energy Efficient and Technological Approach 410
1 Introduction 410
2 Ultrasonic Cavitation 412
2.1 Generation 412
2.2 Driving Force Responsible for Nanoparticle Formation 412
3 Preparation of Nanomaterials 413
3.1 Metal Nanoparticles 414
3.2 Bimetallic Nanoparticles 419
3.3 Metal Oxide Nanoparticles 419
3.4 Mixed Oxides 424
3.5 Porous Materials 428
3.6 Nanocomposites 430
3.7 Supported/Immobilized Metallic Nanoparticles 434
3.8 Ultrasound-Assisted Coating 437
3.9 Chalcogenides 439
3.10 Other Nanomaterials 442
4 Conclusions 443
References 444
16 Power Ultrasound to Process Dairy Products 450
1 Introduction 450
2 Basic Concepts of Ultrasound Technology 451
3 Power Ultrasound 451
4 Pasteurization of Milk with Power Ultrasound 452
4.1 Enzymes 454
4.2 Nutritional Properties 455
4.2.1 Proteins 455
4.2.2 Vitamins and Minerals 456
4.3 Physical--Chemical Characteristics 456
4.3.1 Viscosity 456
4.3.2 Density 458
4.3.3 pH 458
4.3.4 Color 459
5 Microstructure of Milk After Sonication 461
6 Processing of Dairy Products with Ultrasound Technology 463
6.1 Milk 463
6.1.1 Milk as Beverage 463
6.1.2 Lactose-Free Milk 463
6.1.3 Human Milk 464
6.2 Yogurt 464
6.3 Cheese 466
7 Other Uses of Power Ultrasound in the Dairy Industry 467
8 Final Remarks 468
References 468
17 Sonocrystallization and Its Application in FoodINTbreak and Bioprocessing
1 Introduction 471
2 Mechanism of Sonocrystallization 473
3 Reactor Designs 476
4 Case Study of Lactose Recovery from Whey 480
4.1 Experimental Methodology 480
4.2 Effect of Operating Parameters on Lactose Recovery and Crystal Habit 481
4.3 Process Optimization Using Statistical Approach 485
5 Overview of Recent Literature on Sonocrystallization 487
6 Concluding Remarks and Scope for Future Work 494
References 495
18 Ultrasound-Assisted Freezing 498
1 Summary 498
2 Introduction 498
3 Ultrasound and Freezing Efficiency 499
3.1 Influence of Ultrasound on Freezing Rate 499
3.2 Influence of Acoustic Power on Freezing Process 503
4 Ultrasound and Ice Nucleation Temperature 505
5 Ultrasound and Tissue Orientation 508
6 Conclusions 510
References 511
19 Ultrasound-Assisted Hot Air Drying of Foods 513
1 Introduction 513
2 The Food Drying Process 514
3 Influence of Ultrasound on Mass Transfer 515
4 Main Systems for Ultrasonic Application in Hot Air Drying 517
4.1 Siren and Whistle Systems 517
4.2 Stepped Plates 518
4.3 Vibrating Cylinders 519
5 Influence of Some Process Variables on Hot Air Drying of Foods Assisted by High-Intensity Ultrasound 521
5.1 Effect of Air Velocity 522
5.2 Air Temperature Effect 525
5.3 Applied Acoustic Energy 528
5.4 Material Structure 530
6 Final Remarks 533
References 533
20 Novel Applications of Power Ultrasonic Spray 537
1 Introduction 537
2 Snack Food Seasoning Coating 537
3 Ultrasonic Atomization Fundamentals 538
4 Ultrasonic Atomizers for Seasoning Applications 540
4.1 Continuous Atomization 541
4.2 Registered Pulsed Spray 542
5 Conclusions 545
References 546
21 High-Power Ultrasound in Surface Cleaning and Decontamination 547
1 High-Power Ultrasound 547
2 Ultrasonic Cleaning Mechanism 548
2.1 Cavitation and Micro-streaming 548
2.2 Ultrasonic Generation 549
2.3 Cavitation Formation Mechanism 550
2.4 Frequency and Cavitation Abundance 551
3 Precision Cleaning 552
3.1 Ultrasonic Cavitations and Surface Cleaning 552
3.2 Power Requirements 553
4 Ultrasonic Cleaning Equipment 553
5 Cleaning Chemistry 554
5.1 Selection of Cleaning Fluids 555
6 Contaminants 555
7 Mechanism of Cleaning 556
7.1 Particle Removal 557
7.2 Particle Removal Mechanism 557
7.3 Prevention of Redeposition 558
7.4 Cleaning Chemistry and Particles 559
8 Conclusion 559
References 559
22 Effect of Power Ultrasound on Food Quality 561
1 Introduction 561
2 Texture 562
3 Flavor 568
4 Color 573
5 Nutrients 577
References 581
23 Ultrasonic Membrane Processing 585
1 Introduction 585
1.1 Concentration Polarization and Membrane Fouling 586
2 Ultrasonic Flux Enhancement 587
2.1 The Effects of Ultrasonic Intensity 588
2.2 Operating Pressure Effects 590
2.3 The Influence of Crossflow Velocity 592
2.4 Solids Concentration 592
3 Membrane Cleaning 593
4 Industrial Scale Module Design 594
5 Related Technologies 596
6 Conclusions 596
References 596
24 Industrial Applications of High Power Ultrasonics 601
1 Summary 601
2 Introduction 601
3 Fundamentals of High-Power Ultrasound 602
4 Process and Scale-Up Parameters 603
4.1 Energy and Intensity 603
4.2 Pressure 604
4.3 Temperature and Viscosity 605
5 Applications and Benefits 605
5.1 Summary of Applications 605
5.2 Extraction 605
5.3 Emulsification/Homogenization 607
5.4 Crystallization 608
5.5 Filtration and Screening 608
5.6 Separation 609
5.7 Viscosity Alteration 609
5.8 Defoaming 609
5.9 Extrusion 610
5.10 Microbial Disinfection and Cleaning 610
5.11 Fermentation 612
5.12 Heat Transfer 612
6 Commercialization 613
7 Key Lessons in Commercializing Innovative Technologies 614
8 Conclusions 616
References 616
25 Technologies and Applications of Airborne Power Ultrasound in Food Processing 619
1 Introduction 619
2 Airborne Power Ultrasonic Technologies for Food Processing 620
3 Applications in Food Processing 622
3.1 Ultrasonic Defoaming in Fermentation Processes and in the Filling Operation of Gassy Liquids 623
3.1.1 Chemical Defoaming Methods 624
3.1.2 Physical Methods 624
3.1.3 Ultrasonic Defoaming 624
3.2 Dehydration of Vegetables 625
3.2.1 Forced Air Dehydration Assisted by Airborne Ultrasound 627
3.2.2 Direct Contact Ultrasonic Dehydration 629
3.3 Oil Extraction Processes with Supercritical Fluids Assisted by Power Ultrasound 635
4 Conclusions 641
References 641
Index 644
Erscheint lt. Verlag | 17.11.2010 |
---|---|
Reihe/Serie | Food Engineering Series | Food Engineering Series |
Zusatzinfo | XII, 668 p. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie |
Technik ► Lebensmitteltechnologie | |
Technik ► Umwelttechnik / Biotechnologie | |
Schlagworte | biochemical engineering • food bioprocessing • food engineering • food science • Food Technology |
ISBN-10 | 1-4419-7472-5 / 1441974725 |
ISBN-13 | 978-1-4419-7472-3 / 9781441974723 |
Haben Sie eine Frage zum Produkt? |
Größe: 14,9 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich