Innovative Technological Materials (eBook)
XXII, 279 Seiten
Springer Berlin (Verlag)
978-3-642-12059-6 (ISBN)
This book provides new insight into material science and technology. In particular, non-conventional, unusual or innovative neutron and x-ray scattering experiments (from both the scientific and the instrumental point of view) are described.
Contents 6
Notation 11
1 Introduction and State-of-the-Art 21
1.1 Innovative Materials at Different Scales 21
1.2 Improved Physical Properties and Material Functionality at Atomic Scales and Nanoscales 24
1.2.1 Intermetallics 24
1.2.2 Nanomaterials and Nanocomposites 24
1.2.3 Nanomaterials and Nanocomposites for Bioapplications and Medical Applications 29
1.3 Improved Material Functionality at the Microscale or Mesoscale 30
1.3.1 Metal Matrix Composites MMC 30
1.3.2 Ceramic Matrix Composites CMC 33
1.4 Multifunctional Structures at the Macrolevel 34
1.4.1 Functionally Graded Coatings (FGC) for Thermal (TBC), Wear (WBC), and Oxidation (OBC) Barriers 34
1.4.2 Fracture Resistance of FGM and TBCs 35
2 X-ray and Neutron Scattering 37
2.1 Unperturbed Beams 37
2.2 Interactions 39
2.2.1 X-rays 39
2.2.2 Neutrons 45
2.3 Introduction to Crystallography 49
2.3.1 Monodimensional Array of Atoms 49
2.3.2 Three-Dimensional Array of Atoms 50
2.3.3 The Reciprocal Lattice 51
2.3.4 Crystals 51
2.3.5 The Ideal Paracrystal 52
2.4 Introduction to Powder Diffraction 54
2.4.1 Bragg's Law 54
3 Microstructural Investigations by Small Angle Scattering of Neutrons and X-rays 55
3.1 Introduction 55
3.2 Theoretical Basis 55
3.2.1 Cross Sections 55
3.2.2 Two-Phase Model 56
3.2.3 Guinier's and Porod's Approximations 57
3.2.4 The Kratky Plot and Porod's Invariant 58
3.2.5 Non-diluted Systems 58
3.3 Experimental Methods 59
3.3.1 Experimental Set-Up 59
3.3.2 Data Analysis 60
3.3.3 Grazing Incidence Small-Angle X-ray Scattering (GISAXS) 61
3.4 A Classical Application 62
3.5 Applications to Innovative Materials 65
3.5.1 Carbon Nanotubes: Single-Walled and Multi-Walled Carbon Nanotubes 65
3.5.2 Nanocomposites 68
3.5.3 Materials for Fuel Cells 76
3.5.4 Biomaterials 83
3.5.5 Electronic Devices: Nanoline Gratings 87
3.5.6 Advanced Light Alloys 89
3.5.7 Applications of Grazing Incidence Small-Angle X-ray Scattering 93
4 Residual Stress Analysis by Neutron and X-ray Diffraction 99
4.1 Residual Stress 99
4.1.1 Basis on Strain and Stress Evaluation by Using Neutron and X-ray Beams 101
4.1.2 Other Techniques of Strain and Stress Evaluation by Using Neutron and X-ray Diffraction 108
4.1.3 Experimental Facilities 111
4.2 Applications 111
4.2.1 Applications to Classic Materials 114
4.2.2 Applications to Innovative Materials 130
5 Three-Dimensional Imaging by Microtomography of X-ray Synchrotron Radiation and Neutrons 143
5.1 Introduction to Three-Dimensional Imaging by X-ray Synchrotron Radiation Microtomography 143
5.2 Application of X-ray Computed Microtomography for the Investigation of Metallic Foams, Composites, Biomaterials, Interfacial Properties, In-situ Transformation and Damage Evolution of Cracks 148
5.2.1 Foams for Advanced Technological Applications 149
5.2.2 Sintering Processes 154
5.2.3 Composite Materials 158
5.2.4 Biomaterials 161
5.2.5 Cell Tracking 170
5.2.6 Microstructural Investigations of Native Bone 171
5.2.7 Other Applications 176
5.3 Introduction to Three-Dimensional Imaging by Neutron Tomography 176
5.4 Application of Neutron Tomography for the Investigation of Fuel Cells, Foams for Advanced Technological Applications, Composites, Biomaterials and Historical Artefacts 181
5.4.1 Fuel Cells 181
5.4.2 Metallic Foams for Advanced TechnologicalApplications 184
5.4.3 Composites 185
5.4.4 Biomaterials 187
5.4.5 Cultural Heritage Items 188
5.5 Other Tomographic Techniques 190
6 Constitutive Models for Analysis and Design of Multifunctional Technological Materials 199
6.1 Constitutive Material Modeling at the Nanoscale 199
6.1.1 Interatomic Potentials in CNTs 199
6.1.2 Numerical Modeling of CNTs 202
6.1.3 Numerical Results 204
6.2 Constitutive Modeling at Microscale and Macroscale 207
6.2.1 Anisotropic Elastic Material Models -- Application to Composites 207
6.2.2 Elastic-Damage Material Models -- Effective Elastic Stiffness or Compliance Matrices 214
6.2.3 Elastic-Plastic Material Models -- Plastic Anisotropy and Plastic Hardening 216
6.2.4 Constitutive Equations of Plastic Hardening 222
6.2.5 Incremental Constitutive Equations of Elastoplasticity 226
6.3 Modeling Multidissipative Materials 229
6.3.1 Coupled Nonlinear Damage--Plasticity Model 229
6.3.2 Coupled Thermal Damage--Plasticity Model 234
7 Enhanced Numerical Tools for Computer Simulation of Coupled Physical Phenomena and Design of Components Made of Innovative Materials 245
7.1 Application of the Concept of Continuous Damage Deactivation to Modeling of the Low Cycle Fatigue of Aluminum Alloy Al-2024 245
7.1.1 Experiment of Low Cycle Fatigue of Aluminum Alloy Al-2024 245
7.1.2 Effect of Continuous Damage Deactivation 246
7.1.3 Modeling of Damage Affected Plastic Flow 248
7.1.4 Results 249
7.2 Modeling the FGM A356R Brake Disk Against Global Thermoelastic Instability (Hot-Spot) 251
7.2.1 Preliminaries 251
7.2.2 Stability of a Brake Disk Made of Stainless Steel ASTM-321 253
7.2.3 Stability of a Brake Disk Made of Homogeneous A356R Composite 254
7.2.4 Stability of a Brake Disk Made of Functionally Graded Composite A356R 256
7.2.5 Advantages of Application of Functionally Graded Materials for the Design of Brake Disks Against Hot-Spots 258
7.2.6 Conclusions 258
7.3 Modeling Wear Resistance of a Piston Sleeve Made of MMC A356R 259
7.3.1 Model 259
7.3.2 Results 261
7.4 Finite Element Modeling of the CrN/FGM/W300 and CrN/Cr/W300 Architectures 262
7.4.1 Plies Problem Formulation and Materials 262
7.4.2 Finite Element Modeling 263
7.4.3 Loads and Boundary Conditions 263
7.4.4 Thermal Ratchetting 264
7.4.5 Architecture Dependent Results 264
7.4.6 Possible Extensions 265
7.5 Modelling of the ZrO2/FGM/316L Screen Against Thermal Cycles 266
7.5.1 Introduction 266
7.5.2 Constitutive Equations of the Elastic-Plastic Damage Material Model 266
7.5.3 Model -- Geometry and Boundary Conditions 269
7.5.4 Manufacturing Phase Analysis 271
7.5.5 Working Phase Analysis 273
7.5.6 Conclusions 274
References 275
Index 285
Erscheint lt. Verlag | 16.6.2010 |
---|---|
Zusatzinfo | XXII, 279 p. |
Verlagsort | Berlin |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Atom- / Kern- / Molekularphysik |
Technik ► Bauwesen | |
Technik ► Maschinenbau | |
Schlagworte | diffraction • Material properties • Microtomography • Modeling • neutron diffraction • neutron scattering • Stress • Synchroton radiation • X-ray scattering |
ISBN-10 | 3-642-12059-8 / 3642120598 |
ISBN-13 | 978-3-642-12059-6 / 9783642120596 |
Haben Sie eine Frage zum Produkt? |
Größe: 21,4 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich