Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems (eBook)
XVIII, 389 Seiten
Springer Berlin (Verlag)
978-3-642-04045-0 (ISBN)
In the twenty-first century the sustainability of energy and transportation systems is on the top of the political agenda in many countries around the world.
Environmental impacts of human economic activity necessitate the consideration of conflicting goals in decision making processes to develop sustainable systems. Any sustainable development has to reconcile conflicting economic and environmental objectives and criteria. The science of multiple criteria decision making has a lot to offer in addressing this need. Decision making with multiple (conflicting) criteria is the topic of research that is at the heart of the International Society of Multiple Criteria Decision Making. This book is based on selected papers presented at the societies 19th International Conference, held at The University of Auckland, New Zealand, from 7th to 12th January 2008 under the theme 'MCDM for Sustainable Energy and Transportation Systems''.
Preface 5
Contents 8
Contributors 12
Part I Multiple Criteria Decision Making, Transportation, Energy Systems, and the Environment 18
On the Potential of Multi-objective Optimization in the Design of Sustainable Energy Systems 19
1 Introduction 19
2 Methodology 20
3 Real-world Applications 22
3.1 Communal Energy System 22
3.2 Industrial Energy System 23
3.3 Distillation Plant 25
4 Conclusions and Potential 26
References 27
Evaluation of the Significant Renewable Energy Resources in India Using Analytical Hierarchy Process 29
1 Introduction 29
2 Nonrenewable Energy Resources and Demands in India 30
3 Government Initiatives to Promote Renewable Energy 31
3.1 Wind Energy 32
3.2 Bio Energy 32
3.3 Solar Energy 32
4 AHP Approach 33
5 Application of AHP for the Prioritization of Renewable Energy Resources in India 36
5.1 Synthesizing Judgments 40
6 Conclusion 41
References 41
Multiple Criteria Decision Support for Heating Systemsin Electric Transport 43
1 Environmental Parameters 43
2 Problem Formulation 44
3 HVAC System 44
4 Control System Design 45
5 Decision Algorithm 46
6 Decision Methodology 47
7 System Decision Making Control Realization 48
8 Conclusions 50
References 50
Multi Criteria Decision Support for Conceptual Integral Design of Flex(eble)(en)ergy Infrastructure 51
1 Introduction 51
2 Design Methodology 53
2.1 Integral Design 53
2.2 Morphological Overview 54
2.3 Evaluation and Decision Making VDI 2225Decision Support
3 MCDM 56
3.1 Multi-Criteria Decision Analysis in Energy Planning 57
3.2 MCDA and Planning of Local Energy Systemswith Multiple Energy Carriers 57
3.3 MCDA and Energy Planning – a Review 58
4 Discussion 58
5 Conclusion and Further Research 59
References 60
A Multi Criteria Knapsack Solution to Optimise Natural Resource Management Project Selection 62
1 Introduction 62
2 Compromise Programming 63
3 The Knapsack Problem (KP) 64
4 Exact Solution Methods and Meta-Heuristics 65
5 Development of the Multi Criteria Analysis Tool (MCAT) 65
6 Illustrative Application of MCAT – Water Quality Investments Perth, Western Australia 66
7 Conclusion 69
References 69
Environmental and Cost Synergy in Supply Chain Network Integration in Mergers and Acquisitions 71
1 Introduction 71
2 The Pre- and Post-Merger Supply Chain Network Models 74
2.1 The Pre-Merger Supply Chain Network Modelwith Environmental Concerns 74
2.2 The Post-Merger Supply Chain Network Modelwith Environmental Concerns 78
3 Quantifying Synergy Associated with Multicriteria Decision-Making Firms with Environmental Concernsin Mergers/Acquisitions 81
4 Numerical Examples 82
5 Summary and Concluding Remarks 88
References 89
The Analytic Hierarchy Process in the Transportation Sector 93
1 Introduction 93
2 Benefits and Costs in Crossing a River 97
2.1 Benefits 98
2.2 Costs 98
2.3 Results 99
3 Planning, Sudan Transport 100
3.1 Priorities of the Scenarios 100
3.2 Priorities of Regions and Projects 101
4 Dependence and Feedback in Choosing a Car 102
5 Conclusions 105
References 105
RECIFE: A MCDSS for Railway Capacity Evaluation 106
1 Introduction 106
2 Railway Capacity Evaluation Problem 108
3 Organization and Components of RECIFE 109
3.1 Data in Input: One Scenario 110
3.2 Handling the First Criterion: The Optimization Stage 111
3.3 Handling the Second Criterion: The Simulation Stage 111
3.4 Data in Output: A Timetable 114
4 Conclusion and On-going Works 114
References 115
Balancing Efficiency and Robustness – A Bi-criteria Optimization Approach to Railway Track Allocation 117
1 Introduction 118
2 The Track Allocation Problem 119
3 Towards a Bi-criteria Optimization Approach 121
4 Details on Column Generation 124
5 Preliminary Computational Results 125
References 127
Tolling Analysis with Bi-objective Traffic Assignment 129
1 Introduction 129
2 Conventional Traffic Assignment 133
3 Bi-objective Traffic Assignment Procedures 134
4 Feasibility of Transformation of BUE Conditions 137
5 Conclusions and Further Research 140
References 141
Part II Applications of Multiple Criteria Decison Makingin Other Areas 142
National Risk Assessment in The Netherlands 143
1 Introduction 143
2 The NRA 144
3 Multi-Criteria Methods Used 146
3.1 The Weighted Sum Approach 147
3.2 The Medal Methods 147
3.3 The Evamix Method 148
4 Uncertainty, Sensitivity and Robustness Analyses 149
4.1 Pluralistic Weighting: Using Group Preference Profiles 149
4.2 Traditional Uncertainty, Sensitivity, and Robustness Analyses 150
5 NRA Outcomes, Use and Communication 151
6 Concluding Remarks 152
References 153
Evaluation of Green Suppliers ConsideringDecision Criteria Dependencies 154
1 Introduction 154
2 Green Supplier Selection Model 155
3 Choquet Integral Based Aggregation 158
4 Application 160
5 Conclusion 162
References 162
A Multiobjective Bilevel Program for Production-Distribution Planning in a Supply Chain 164
1 Introduction 164
2 Bilevel Programs with a Single Objective Functionat each Level 166
2.1 Main Characteristics 166
2.2 Bilevel Problems Versus Bicriteria Problems 167
3 Bilevel Programs with Multiple Objective Functionsat the Lower-Level 168
4 Modeling Production-Distribution Planning in a Supply Chain as a Bilevel Program 170
4.1 The Objective Functions and the Constraints 171
4.2 The Models 172
5 Conclusions 173
References 174
An Ordinal Regression Method for Multicriteria Analysis of Customer Satisfaction 175
1 Introduction 175
2 The Dummy Variable Regression Method 176
3 Results 180
4 Conclusions 182
References 183
Discrete Time-Cost Tradeoff with a Novel Hybrid Meta-Heuristic 185
1 Introduction 185
2 Preliminaries and Definitions 187
2.1 Structure of a Solution 187
2.2 Initial Population 187
2.3 Time-Cost Tradeoff Curve and Convex Hull 187
2.4 Distance Measurement 188
2.5 Crossover 188
2.6 Mutation 189
2.7 Simulated Annealing 189
3 Hybrid Meta-Heuristic 189
4 HMH Approach to Test Cases 191
5 Conclusions 194
References 196
Goal Programming Models and DSS for Manpower Planning of Airport Baggage Service 197
1 Introduction 197
2 Data Modeling 198
2.1 Individual Demands 199
2.2 Overall Demands 199
3 Goal Program Modeling 200
3.1 Model 1 200
3.2 Model 2 202
3.3 Model 3 202
4 Numerical Results and Comments 203
4.1 Numerical Results 203
4.2 Analytical Comments and Comparison of the Models 204
5 Decision Support System 205
6 Concluding Remarks 206
References 207
A MCDM Tool to Evaluate Government Websitesin a Fuzzy Environment 208
1 Introduction 208
2 An Evaluation Framework for Government Websites 209
2.1 Website Evaluation Criteria 210
2.2 Fuzzy Delphi Method 211
2.3 Fuzzy VIKOR Method 212
3 Case Study: Implementation of the Proposed Framework 213
4 Concluding Remarks 216
References 216
Investigating Coverage and Connectivity Trade-offsin Wireless Sensor Networks: The Benefits of MOEAs 218
1 Introduction 218
2 Related Work 219
3 Problem Formulation 220
3.1 Model Description 220
3.2 Optimization Criteria 220
3.2.1 Sensor Cost 220
3.2.2 Transmission Failure Probability 221
4 An Evolutionary Multiobjective Algorithm with Variable Length Representations 221
4.1 Representation 222
4.2 Initialization 222
4.3 Crossover 223
4.4 Voronoi Mutation 223
4.5 Gaussian Position Mutation 224
5 Results and Discussion 224
6 Conclusion and Outlook 226
References 227
AHP as an Early Warning System:An Application in Commercial Banks in Turkey 229
1 Introduction 230
2 Historical Background of Turkish Banking Sector 230
3 Research Background in the Banking Sector 231
4 The Methodology and Data 232
4.1 Analytical Hierarchy Process 232
4.2 Experts 233
4.3 Main Criteria and Descriptions 233
4.4 Implementation of AHP and Results 235
5 Sensitivity Analysis 236
6 Conclusion 237
References 238
A Multi-Criteria Evaluation of Factors Affecting InternetBanking in Turkey 240
1 Introduction 240
2 Previous Research 241
3 Proposed MCDA Framework 243
3.1 Structuring the Problem 243
3.2 Constructing the Decision Model 244
3.3 Analyzing the Problem 246
4 A Real-Life Application 246
5 Conclusions and Further Suggestions 248
References 249
Part III Theory and Methodology of Multiple CriteriaDecision Making 252
Priority Elicitation in the AHP by a Pareto Envelope-Based Selection Algorithm 253
1 Introduction 253
2 The Prioritization Problem in the AHP 254
3 A Multiobjective Approach to Prioritization 255
3.1 Optimization Criteria 255
3.2 The TOP Problem 256
4 Solving the TOP Problem by Evolutionary Computing 257
4.1 Multiobjective Algorithms 257
4.2 Pareto Envelope-Based Selection Algorithm-II (PESA-II) 257
5 An Illustrative Example 259
6 Conclusions 260
References 261
Bibliometric Analysis of Multiple Criteria Decision Making/Multiattribute Utility Theory 262
1 Introduction 262
2 Bibliometric Data 263
3 Conclusions 271
References 271
Ordinal Qualitative Scales 272
1 Introduction 272
2 Preference Relation Representable by a QualitativeOrdinal Scale 273
3 Strength of Preference Representable by a Qualitative Ordinal Scale 275
4 Preferences on Single Criteria Representableby a Qualitative Ordinal Scale 276
5 Strength of Preference on Single Criteria Representableby a Qualitative Ordinal Scale 277
6 Conclusions 278
References 278
Multi-objective Model Predictive Control 280
1 Introduction 280
2 Model Prediction Using Support Vector Regression 281
3 Aspiration Level Approach to Interactive Multi-objective Optimization 283
4 Multi-objective Model Predictive Control 284
5 Illustrative Example – Rocket Soft Landing Problem 285
6 Concluding Remarks 288
References 289
Multiple Criteria Nonlinear Programming Classification with the Non-additive Measure 291
1 Introduction 291
1.1 Multiple Criteria Linear/Nonlinear Programming 292
1.2 Non-additive Measure 294
2 Multiple Criteria Nonlinear Programming with Non-additive Measure 294
2.1 The Choquet Integral with Respect to Non-additive Measure 294
2.2 Non-additive Measure for Data Modeling in Classification 296
3 Experimental Results 297
3.1 US Credit Cardholders' Behaviors Classification 297
3.2 German Credit Cardholders' Behaviors Classification 298
4 Conclusions 298
References 299
Part IV Multiple Objective Optimization 300
A Reduced-Cost SMS-EMOA Using Kriging, Self-Adaptation, and Parallelization 301
1 Introduction 301
2 Related Work 302
3 Multi-objective Optimization and SMS-EMOA 303
4 Self-Adaptation 304
5 Kriging 305
6 Steady-State Parallelization 306
7 Application on Test Problems and in Molecular Control 307
8 Conclusion 310
References 310
Faster Hypervolume-Based Search Using Monte Carlo Sampling 312
1 Introduction 312
2 Preliminaries 313
3 Approach 314
3.1 Sampling 315
3.2 Tight Sampling Spaces 315
3.3 Probability of Correct Selection 317
4 Implementation 318
4.1 Even Sampling 319
4.2 Adaptive Sampling 319
5 Experiments 320
5.1 Accuracy of Selection 320
5.2 Hypervolume-based Search 321
6 Conclusion 322
References 324
Using a Gradient Based Method to Seed an EMO Algorithm 326
1 Introduction 326
2 Related Work 327
3 Definitions and Basic Concepts 329
4 Gradient Based Method for Multi-Objective Optimization 329
4.1 Single-Objective Gradient Based Method 331
5 Hybridization and Preliminary Results 332
6 Conclusions 334
References 335
Nadir Point Estimation Using Evolutionary Approaches:Better Accuracy and Computational Speed ThroughFocused Search 337
1 Introduction 338
2 Nadir Point Estimation Procedures with Accuracyand Computational Time 339
2.1 Surface-to-Nadir: Computing Solutions from Entire Pareto-optimal Surface 340
2.2 Edge-to-Nadir: Computing Edge Solutionsof Pareto-optimal Surface 340
2.3 Extreme-point-to-Nadir: Computing Objective-wiseWorst Pareto-optimal Points 341
2.3.1 Extremized Crowded NSGA-II 341
2.3.2 Proposed Local Search Approach 341
2.3.3 Hybrid Extreme-point-to-nadir Algorithm 343
3 Results on Numerical Test Problems 344
3.1 Problem SZ1 344
3.2 Problem SZ2 347
3.3 Problem IS 348
3.4 Problem KM 350
4 Conclusions 351
References 352
A Branch and Bound Algorithm for Choquet Optimization in Multicriteria Problems 353
1 Introduction 353
2 Choquet Integral and Well-balanced Solutions 354
3 Determination of Choquet-optimal Solutions 357
4 Applications 360
5 Conclusion 362
References 362
Decision Space Diversity Can Be Essential for Solving Multiobjective Real-World Problems 364
1 Introduction 364
2 Aims and Methods 365
3 Real-world Distillation Plant Layout Problem 366
4 First Assessment of the Problem Structure 367
5 Tuning via Constructive Modeling 369
6 Conclusions 373
References 373
Computing and Selecting -Efficient Solutionsof 0,1-Knapsack Problems 375
1 Introduction 375
2 Background 376
3 The Problem 377
4 A Stochastic Search Algorithm 379
4.1 The Algorithm 379
4.2 Discussion and Analysis 380
4.3 Numerical Results 382
5 Interactive Selection Method 383
6 Conclusions 384
References 384
Erscheint lt. Verlag | 10.3.2010 |
---|---|
Reihe/Serie | Lecture Notes in Economics and Mathematical Systems | Lecture Notes in Economics and Mathematical Systems |
Zusatzinfo | XVIII, 389 p. |
Verlagsort | Berlin |
Sprache | englisch |
Themenwelt | Sachbuch/Ratgeber ► Natur / Technik ► Natur / Ökologie |
Mathematik / Informatik ► Mathematik | |
Naturwissenschaften ► Geowissenschaften | |
Technik | |
Wirtschaft ► Allgemeines / Lexika | |
Wirtschaft ► Betriebswirtschaft / Management ► Logistik / Produktion | |
Wirtschaft ► Betriebswirtschaft / Management ► Planung / Organisation | |
Wirtschaft ► Betriebswirtschaft / Management ► Wirtschaftsinformatik | |
Schlagworte | algorithm • algorithms • Analysis • Development • Energy systems • evolutionary algorithms • linear optimization • Model • Multi-Objective Optimization • Multiple Criteria Decision Making • Multiple-Criteria Decision-Making • Multiple Objective Programming • Nonlinear Optimization • Optimization • programming • Regression • RID • sustainable development • Transport • Transportation Systems |
ISBN-10 | 3-642-04045-4 / 3642040454 |
ISBN-13 | 978-3-642-04045-0 / 9783642040450 |
Haben Sie eine Frage zum Produkt? |
Größe: 9,2 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich