Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Elektromagnetische Induktion eines vertikalen magnetischen Dipols über einem leitenden homogenen Halbraum - J. Meyer

Elektromagnetische Induktion eines vertikalen magnetischen Dipols über einem leitenden homogenen Halbraum

(Autor)

Buch | Softcover
II, 120 Seiten
1962 | 1962
Springer Berlin (Verlag)
978-3-540-02878-9 (ISBN)
CHF 76,95 inkl. MwSt
Das magnetische Gesamtfeld eines vertikalen magnetischen Dipols an der Oberflache eines leitenden, homogenen Halbraumes sowie die Induktionsstrome in seinem Innern werden nach Be trag, Phase und Verteilung im quasistationaren Fall berechnet, graphisch dargestellt und disku tiert. FUr das Magnetfeld werden ebenfalls Losungen gegeben bei einem Einheitssprung des Di polmomentes sowie fUr rampen- und fur baiformige Zeitfunktionen. Anwendungen auf geophysi kalische Prospektion und im Erdmagnetismus werden aufgezeigt. Fur den harmonisch oszillierenden Dipol wird die formale mathematische Losung der Wel lengleichung fur das elektrische Vektorpotential, in der Form, wie sie SOMMERFELD gegeben hat, benutzt zur Berechnung der Sinus- und Kosinus-Phasen des Magnetfeldes an der OberfHi che sowie der Stromdichte im Innern des Halbraumes. Das Ergebnis fur die vertikale Kompo nente Hz des Magnetfeldes enth

I. Einleitung.-
1. Problemstellung.-
2. Literaturbetrachtung.-
3. Allgemeine Vorbemerkungen.- II. Harmonisch oszillierender Dipol.-
4. Darstellung der Felder durch Wellenpotentiale.-
5. Lösung für einen homogenen Vollraum.-
6. Formale Lösung für einen homogenen Halbraum.-
7. Vektorpotential für quasistationäre Felder.-
8. Vertikale Komponente des Magnetfeldes.-
9. Horizontale Komponente des Magnetfeldes.-
10. Diskussion des Magnetfeldes.-
11. Anwendung auf geoelektrische Prospektion.-
12. Die Stromverteilung.- III. Einheitssprung des Dipolmomentes.-
13. Die Lösungen im Bildraum der LAPLACE-Transformation.-
14. Vertikale Komponente des Magnetfeldes.-
15. Horizontale Komponente des Magnetfeldes.-
16. Diskussion des Magnetfeldes.- IV. Dipol mit beliebiger Zeitfunktion.-
17. Exakte Lösungen.-
18. Näherungsverfahren zur numerischen Berechnung der Lösung 6.- V. Dipol mit baiförmiger Zeitfunktion.-
19. Die Zeitfunktion.-
20. Vertikale Komponente des Magnetfeldes.-
21. Horizontale Komponente des Magnetfeldes.-
22. Diskussion des Magnetfeldes.-
23. Zusammenhang zwischen Vektogrammen und Feldellipsen.- VI. Dipol mit rampenförmiger Zeitfunktion.-
24. Rampenfunktion.-
25. Vertikale Komponente des Magnetfeldes.-
26. Horizontale Komponente des Magnetfeldes.-
27. Diskussion des Magnetfeldes.-
28. Anwendung für die Induktion bei beliebiger Zeitfunktion des Dipols.- Anhang I. Exkurs über BESSEL-Funktionen.- a) Zylinderfunktionen.- b) Modifizierte Zylinderfunktionen.- c) KELVIN-Funktionen.- Anhang II Reihenentwicklungen der Exponential-, trigonometrischen und KELVIN-Funktionen.- Anhang III. Korrespondenzen der LAPLACE-Transformation.- Anhang IV. Asymptotische Darstellungen der Fehler- undder modifizierten BESSEL-Funktionen.- Anhang V. Der Zwei-Schichten-Fall bei SLICHTER und KNOPOFF.- Zusammenfassung.

Erscheint lt. Verlag 1.1.1962
Reihe/Serie Mitteilungen aus dem Max-Planck-Institut für Aeronomie
Zusatzinfo II, 120 S. 38 Abb.
Verlagsort Berlin
Sprache deutsch
Maße 210 x 297 mm
Gewicht 360 g
Themenwelt Naturwissenschaften Physik / Astronomie Allgemeines / Lexika
Schlagworte Felder • Magnetismus • Wellen
ISBN-10 3-540-02878-1 / 3540028781
ISBN-13 978-3-540-02878-9 / 9783540028789
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Das Lehrbuch

von Wilhelm Kulisch; Regine Freudenstein

Buch | Softcover (2024)
Wiley-VCH (Verlag)
CHF 55,95
für Studierende der Naturwissenschaften und Technik

von Paul A. Tipler; Peter Kersten; Gene Mosca

Buch | Hardcover (2024)
Springer Spektrum (Verlag)
CHF 109,95