Darboux Transformations in Integrable Systems
Theory and their Applications to Geometry
Seiten
2010
|
Softcover reprint of hardcover 1st ed. 2005
Springer (Verlag)
978-90-481-6788-3 (ISBN)
Springer (Verlag)
978-90-481-6788-3 (ISBN)
GU Chaohao The soliton theory is an important branch of nonlinear science. On one hand, it describes various kinds of stable motions appearing in - ture, such as solitary water wave, solitary signals in optical ?bre etc., and has many applications in science and technology (like optical signal communication). On the other hand, it gives many e?ective methods ofgetting explicit solutions of nonlinear partial di?erential equations. Therefore, it has attracted much attention from physicists as well as mathematicians. Nonlinearpartialdi?erentialequationsappearinmanyscienti?cpr- lems. Getting explicit solutions is usually a di?cult task. Only in c- tain special cases can the solutions be written down explicitly. However, for many soliton equations, people have found quite a few methods to get explicit solutions. The most famous ones are the inverse scattering method,B.. acklund transformation etc. The inverse scattering method is based on the spectral theory of ordinary di?erential equations. The Cauchyproblemofmanysolitonequationscanbetransformedtosolving a system of linear integral equations. Explicit solutions can be derived when the kernel of the integral equation is degenerate.
The B.. ac .. klund transformation gives a new solution from a known solution by solving a system of completely integrable partial di?erential equations. Some complicated "nonlinear superposition formula" arise to substitute the superposition principlein linear science.
The B.. ac .. klund transformation gives a new solution from a known solution by solving a system of completely integrable partial di?erential equations. Some complicated "nonlinear superposition formula" arise to substitute the superposition principlein linear science.
1+1 Dimensional Integrable Systems.- 2+1 Dimensional Integrable Systems.- N + 1 Dimensional Integrable Systems.- Surfaces of Constant Curvature, Bäcklund Congruences and Darboux Transformation.- Darboux Transformation and Harmonic Map.- Generalized Self-Dual Yang-Mills Equations and Yang-Mills-Higgs Equations.- Two Dimensional Toda Equations and Laplace Sequences of Surfaces in Projective Space.
Reihe/Serie | Mathematical Physics Studies ; 26 |
---|---|
Zusatzinfo | X, 308 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Maße | 160 x 240 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Naturwissenschaften ► Physik / Astronomie ► Allgemeines / Lexika | |
Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik | |
ISBN-10 | 90-481-6788-4 / 9048167884 |
ISBN-13 | 978-90-481-6788-3 / 9789048167883 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Gekrümmte Kurven und Flächen
Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 76,90
Nielsen Methods, Covering Spaces, and Hyperbolic Groups
Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 153,90