Natural Operations in Differential Geometry
Springer Berlin (Verlag)
978-3-642-08149-1 (ISBN)
Natural operators and natural operations are an area of differential geometry that relates closely to problems in theoretical physics. So far there has been no book on the subject. This one therefore fills the gap and collects in an unified presentation the otherwise scattered material on the subject; it also includes a very comprehensive bibliography and will certainly be the standard reference for the next few years.
I. Manifolds and Lie Groups.- II. Differential Forms.- III. Bundles and Connections.- IV. Jets and Natural Bundles.- V. Finite Order Theorems.- VI. Methods for Finding Natural Operators.- VII. Further Applications.- VIII. Product Preserving Functors.- IX. Bundle Functors on Manifolds.- X. Prolongation of Vector Fields and Connections.- XI. General Theory of Lie Derivatives.- XII. Gauge Natural Bundles and Operators.- References.- List of symbols.- Author index.
Erscheint lt. Verlag | 1.12.2010 |
---|---|
Zusatzinfo | VI, 434 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 664 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Naturwissenschaften ► Physik / Astronomie ► Quantenphysik | |
Schlagworte | Category over Manifolds • Differential Geometry • Jet • manifold • Mathematical Physics • Natural Bundle • Natural Operator |
ISBN-10 | 3-642-08149-5 / 3642081495 |
ISBN-13 | 978-3-642-08149-1 / 9783642081491 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich