Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Heat Kernels for Elliptic and Sub-elliptic Operators

Methods and Techniques
Buch | Hardcover
436 Seiten
2010
Birkhauser Boston Inc (Verlag)
978-0-8176-4994-4 (ISBN)

Lese- und Medienproben

Heat Kernels for Elliptic and Sub-elliptic Operators - Ovidiu Calin, Der-Chen Chang, Kenro Furutani, Chisato Iwasaki
CHF 209,70 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
With each methodology treated in its own chapter, this monograph is a thorough exploration of several theories that can be used to find explicit formulas for heat kernels for both elliptic and sub-elliptic operators. The authors show how to find heat kernels for classical operators by employing a number of different methods. Some of these methods come from stochastic processes, others from quantum physics, and yet others are purely mathematical.


What is new about this work is the sheer diversity of methods that are used to compute the heat kernels. It is interesting that such apparently distinct branches of mathematics, including stochastic processes, differential geometry, special functions, quantum mechanics and PDEs, all have a common concept – the heat kernel. This unifying concept, that brings together so many domains of mathematics, deserves dedicated study.


Heat Kernels for Elliptic and Sub-elliptic Operators is an ideal resource for graduate students, researchers, and practitioners in pure and applied mathematics as well as theoretical physicists interested in understanding different ways of approaching evolution operators.

Part I. Traditional Methods for Computing Heat Kernels.- Introduction.- Stochastic Analysis Method.- A Brief Introduction to Calculus of Variations.- The Path Integral Approach.- The Geometric Method.- Commuting Operators.- Fourier Transform Method.- The Eigenfunctions Expansion Method.- Part II. Heat Kernel on Nilpotent Lie Groups and Nilmanifolds.- Laplacians and Sub-Laplacians.- Heat Kernels for Laplacians and Step 2 Sub-Laplacians.- Heat Kernel for Sub-Laplacian on the Sphere S^3.- Part III. Laguerre Calculus and Fourier Method.- Finding Heat Kernels by Using Laguerre Calculus.- Constructing Heat Kernel for Degenerate Elliptic Operators.- Heat Kernel for the Kohn Laplacian on the Heisenberg Group.- Part IV. Pseudo-Differential Operators.- The Psuedo-Differential Operators Technique.- Bibliography.- Index.

Erscheint lt. Verlag 21.10.2010
Reihe/Serie Applied and Numerical Harmonic Analysis
Zusatzinfo 25 Illustrations, black and white; XVIII, 436 p. 25 illus.
Verlagsort Secaucus
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geometrie / Topologie
Naturwissenschaften Physik / Astronomie
ISBN-10 0-8176-4994-8 / 0817649948
ISBN-13 978-0-8176-4994-4 / 9780817649944
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich