Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Statistical Tools for Nonlinear Regression - Sylvie Huet, Anne Bouvier, Marie-Anne Poursat, Emmanuel Jolivet

Statistical Tools for Nonlinear Regression

A Practical Guide With S-PLUS and R Examples
Buch | Hardcover
234 Seiten
2003 | 2nd ed. 2004
Springer-Verlag New York Inc.
978-0-387-40081-5 (ISBN)
CHF 134,80 inkl. MwSt
Statistical Tools for Nonlinear Regression, Second Edition, presents methods for analyzing data using parametric nonlinear regression models. The examples are analyzed with the free software nls2 updated to deal with the new models included in the second edition.
Statistical Tools for Nonlinear Regression, Second Edition, presents methods for analyzing data using parametric nonlinear regression models. The new edition has been expanded to include binomial, multinomial and Poisson non-linear models. Using examples from experiments in agronomy and biochemistry, it shows how to apply these methods. It concentrates on presenting the methods in an intuitive way rather than developing the theoretical backgrounds. The examples are analyzed with the free software nls2 updated to deal with the new models included in the second edition. The nls2 package is implemented in S-PLUS and R. Its main advantages are to make the model building, estimation and validation tasks, easy to do. More precisely, Complex models can be easily described using a symbolic syntax. The regression function as well as the variance function can be defined explicitly as functions of independent variables and of unknown parameters or they can be defined as the solution to a system of differential equations. Moreover, constraints on the parameters can easily be added to the model. It is thus possible to test nested hypotheses and to compare several data sets. Several additional tools are included in the package for calculating confidence regions for functions of parameters or calibration intervals, using classical methodology or bootstrap. Some graphical tools are proposed for visualizing the fitted curves, the residuals, the confidence regions, and the numerical estimation procedure.

Nonlinear Regression Model and Parameter Estimation.- Accuracy of Estimators, Confidence Intervals and Tests.- Variance Estimation.- Diagnostics of Model Misspecification.- Calibration and Prediction.- Binomial Nonlinear Models.- Multinomial and Poisson Nonlinear Models.

Reihe/Serie Springer Series in Statistics
Zusatzinfo XIV, 234 p.
Verlagsort New York, NY
Sprache englisch
Maße 152 x 234 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Studium Querschnittsbereiche Epidemiologie / Med. Biometrie
ISBN-10 0-387-40081-8 / 0387400818
ISBN-13 978-0-387-40081-5 / 9780387400815
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85