Viruses in Foods (eBook)
XIII, 512 Seiten
Springer International Publishing (Verlag)
978-3-319-30723-7 (ISBN)
Foodborne viruses are an important group of pathogens recognized to cause significant disease globally, in terms of both number of illnesses and severity of disease. Contamination of foods by enteric viruses, such as human norovirus and hepatitis A and E viruses, is a major concern to public health and food safety. Food Virology is a burgeoning field of emphasis for scientific research. Many developments in foodborne virus detection, prevention and control have been made in recent years and are the basis of this publication.
This second edition of Viruses in Foods provides an up-to-date description of foodborne viruses of public health importance, including their epidemiology and methods for detection, prevention and control. It uniquely includes case reports of past outbreaks with implications for better control of future outbreaks, a section that can be considered a handbook for foodborne virus detection, and updated and expanded information on virus prevention and control, with chapters on natural virucidal compounds in foods and risk assessment of foodborne viruses.
Sagar M. Goyal is a Professor of Virology in the Veterinary Population Medicine Department at the University of Minnesota's College of Veterinary Medicine.Jennifer L. Cannon is an Associate Professor of Food Virology at the University of Georgia’s Center for Food Safety and in the Department of Food Science and Technology.
1. Food Virology: Advances and NeedsCharles P. GerbaReferences2. Human and Animal Viruses in Food (Including Taxonomy of Enteric Viruses)Gail E. Greening, Jennifer L. Cannon1.0 Introduction2.0 Hepatitis A virus2.1 Distribution and transmission2.2 Taxonomy and morphology2.3 Growth and biological properties2.4 Infection and disease2.5 Foodborne disease3.0 Hepatitis E virus3.1 Distribution and transmission3.2 Taxonomy and morphology3.3 Growth and biological properties3.4 Infection and disease3.5 Foodborne disease3.6 Zoonotic transmission4.0 Norovirus 4.1 Distribution and transmission4.2 Taxonomy and morphology4.3 Growth and biological properties4.4 Infection and disease4.5 Foodborne disease4.6 Zoonotic transmission5.0 Sapovirus5.1 Distribution and transmission5.2 Taxonomy and morphology5.3 Growth and biological properties5.4 Infection and disease5.5 Foodborne disease5.6 Zoonotic transmission6.0 Rotavirus6.1 Distribution and transmission6.2 Taxonomy and morphology6.3 Growth and biological properties6.4 Infection and disease6.5 Foodborne disease6.6 Zoonotic transmission7.0 Astrovirus7.1 Distribution and transmission7.2 Taxonomy and morphology7.3 Growth and biological properties7.4 Infection and disease7.5 Foodborne disease8.0 Other viruses with potential for foodborne transmission8.1 Adenovirus8.2 Enterovirus8.3 Aichivirus8.4 Parvovirus8.5 Coronavirus8.6 Torovirus8.7 Picobirnavirus8.8 Tick-borne encephalitis virus8.9 Other foodborne routes of virus transmission9.0 Summary and conclusions10.0 References3. The Molecular Virology of Enteric VirusesJavier Buesa, Jesús Rodriguez-Díaz1.0 Caliciviruses: Noroviruses and Sapoviruses1.1. Structure and Composition 1.2. Genomes and Proteins1.3. Molecular Diversity of Noroviruses1.4. Genetic Classification of Sapoviruses1.5. Virus Replication1.6. Virus-Cell Interactions2.0 Rotaviruses2.1. Virus Classification2.2. Structure of the Virion2.3. The Genome2.4. Mechanisms of Evolution and Strain Diversity2.5. Genome Replication2.6. Cell infection2.7. The NSP4 Enterotoxin3.0 Astroviruses3.1. Structure of the Virion3.2. Genome and Proteins4.0 Enteroviruses4.1. Polioviruses4.2. Kobuviruses5.0 Hepatitis A Virus5.1. The Genome5.2. Proteins5.3. Virus Replication6.0 Hepatitis E Virus6.1. The Genome6.2. Genetic Variants6.3. Proteins6.4. Replication7.0 Enteric Adenovirus8.0 Summary9.0 References4. Epidemiology of Food-borne VirusesAron J. Hall1.0 Introduction2.0 Disease Burden2.1 Challenges and Methods to Estimating Burden2.2 Burden in the United States2.3 Global Burden3.0 Outbreak Surveillance3.1 Outbreak Detection Methods3.2 Public Health Investigation3.3 National Surveillance Systems3.4 Descriptive Epidemiology4.0 Summary and Conclusions5.0 References5. Epidemiology of Viral Foodborne Outbreaks: Role of Food Handlers, Irrigation Water, and SurfacesCraig Hedberg1.0Introduction2.0Outbreak detection, investigation, and surveillance3.0Role of food handlers4.0Role of irrigation water5.0Role of surface contamination6.0Summary and conclusions7.0References6. Case Studies and Outbreaks – Fresh ProduceEfstathia Papafragkou, Kaoru Hida and Center for Food Safety and Applied Nutrition1.0. Introduction2.0. Case studies and outbreaks2.1 Norovirus outbreaks2.2 Hepatitis A virus outbreaks3.0. Summary and conclusions4.0. References7. Shellfish-Associated Enteric Virus Illness: Virus Localization, Disease Outbreaks and PreventionGary P. Richards1.0. Introduction2.0. Virus localization within shellfish3.0. Case studies3.1. Hepatitis A virus3.2. Noroviruses3.3. Hepatitis E virus4.0. Disease prevention4.1. Routine monitoring and regulations4.2. Enhanced monitoring and enforcement4.3. Improved sewage treatment 4.4. Analytical techniques4.5. Processing strategies4.6. Disease reporting and epidemiological follow-up4.7. Hygienic practices5.0. Summary 6.0. References8. Outbreaks and case studies – Community and Food HandlersQing Wang, Sarah Markland, and Kalmia E. Kniel1.0 Introduction2.0 Human norovirus2.1 Case study 12.2 Case study 22.3 Case study 32.4 Prevention and control3.0 Rotavirus3.1 Case study 13.2 Case study 23.3 Case study 33.4 Prevention and control4.0 Hepatitis A Virus4.1 Case study 14.2 Prevention and control5.0 Aichivirus6.0 Hepatitis E Virus6.1 Case study 16.2 Case study 26.3 Prevention and control7.0 Summary8.0 References9. Methods for Virus Recovery from FoodsSagar M. Goyal and Hamada A. Aboubakr1.0 INTRODUCTION2.0 FOOD SAMPLING FOR VIRUS DETECTION3.0 STRATEGIES FOR RECOVERY OF VIRUSES FROM FOODS3.1 The approach of viral particle recovery3.1.1 Elution of viral particles from food matrices3.1.3 Concentration step3.1.4 Secondary concentration step3.2 The approach of direct recovery of viral RNA from food4.0 QUALITY ASSURANCE OF VIRUS RECOVERY METHODS FROM FOOD5.0 CONCLUSIONS6.0 REFERENCES 10. Methods for Virus Recovery in WaterKristen E. Gibson and Mark A. Borchardt1.0 Introduction2.0 Virus recovery methods2.1 VIRADEL 2.2 Hollow Fiber Ultrafiltration 2.3 Secondary Concentration2.4 Method Selection: What is important?3.0 Advantages of virus sampling5.0 Summary and conclusions6.0 References11. Molecular Detection Methods of Foodborne VirusesPreeti Chhabra & Jan Vinjé1.0 Introduction2.0 Non-amplification methods2.1 Probe hybridization 2.1.1 Biosensors2.1.2 Nucleic acid aptamers2.1.3 Carbohydrates (Histo-blood group antigens)2.1.4 Quantum dots2.1.5 Microarray3.0 Target-specific amplification methods3.1 Conventional polymerase chain reaction (PCR): RT-PCR, nested PCR, multiplex PCR3.1.1 Post amplification analysis and interpretation of results of conventional PCRs3.2 Real-time PCR3.3. Controls: process controls and amplification controls3.3.1 Process controls3.3.2 Amplification controls3.3.3 Interpretation of PCR and qPCR results based on control results3.4 Application of conventional and real-time PCRs in detection of viruses in food matrix3.5 Isothermal amplification methods3.5.1 Nucleic acid sequence-based amplification (NASBA)3.5.1.1 Molecular Beacon in NASBA3.5.2 Loop mediated isothermal amplification (LAMP)4.0 Conclusions5.0 References12. Methods for Estimating Virus InfectivityDoris H. D’Souza1.0 Introduction2.0 RT-PCR for infectious virus detection2.1 Enzymatic pretreatments for detection of damaged capsid/loss of infectivity2.2 Labelling with biotin hydrazide for detection of oxidatively damaged viral capsids2.3 Pretreatment with intercalating dyes followed by molecular assays for infectivity determination2.4 Porcine gastric mucin (PGM) as a method for selective binding of intact viral capsids2.5 Other binding-based infectivity assays2.6 Cell-culture combinations with molecular based detection (RT-PCR)3.0 Use of cultivable surrogates for the determination of human norovirus (HuNoV) infectivity3.1Feline calicivirus as a cultivable HuNoV surrogate to determine infectivity3.2 Murine norovirus as a cultivable surrogate for HuNoV 3.3 Tulane virus as a cultivable surrogate to determine HuNoV infectivity3.4 Porcine sapovirus as a cultivable HuNoV surrogate to determine infectivity3.5 Virus-Like particles as surrogates4.0 Animal models and human feeding studies 4.1Animal models4.2Feeding studies/Human challenge studies5.0 Summary and conclusions6.0 References13. Survival of Enteric Viruses in the Environment and FoodG. Sánchez, A. Bosch1.0 Introduction2.0 Methods to study virus persistence in food and the environment3.0 Virus persistence in the environment3.1 Virus persistence in environmental waters 3.2 Virus persistence in soil3.3 Virus persistence in aerosols3.4 Virus persistence on fomites3.5 Virus persistence on hands4.0 Stability of enteric viruses in food products4.1 Stability of enteric viruses on chilled products 4.2 Stability of enteric viruses under frozen storage 4.3 Effects of relative humidity on enteric virus persistence4.4 Stability of enteric viruses on dried food products4.5 Stability of enteric viruses under modified atmosphere packaging4.6 Effects of acidification on enteric virus survival5.0 Conclusions6.0 References14. Using Microbicidal Chemicals to Interrupt the Spread of Foodborne VirusesSyed A. Sattar, Sabah Bidawid1.0 Introduction2.0 Basic considerations3.0 Test methodologies to determine virucidal activity4.0 Factors in testing virucidal activity4.1 Test viruses4.2 Nature and design of carriers4.2.1 Environmental surfaces4.2.2 Food items4.2.3 Hands4.3 Nature and level of soil loading4.4 Time and temperature for virus-microbicide contact4.5 Elimination of Cytotoxicity4.6 Neutralization of virucidal activity4.7 Quantitation of virus infectivity4.8 Number of test and control carriers4.9 Product performance criteria5.0 Currently available tests5.1 Quantitative suspension tests5.2 Quantitative carrier tests6.0 Practical aspects of testing microbicides6.1 Hepatitis A virus strain HM-175 (ATCC VR-1402)6.2 Feline calicivirus strain F9 (ATCC VR-782)6.3 Murine norovirus type 1 (Strain S99)6.4 Human rotavirus - WA strain (ATCC VR-2018)6.5 Additional Controls in virucidal Tests7.0 Microbicides in environmental control of foodborne viruses8.0 Concluding remarks9.0 References15. Virus Inactivation During Food ProcessingAlvin Lee, Stephen Grove1.0 Introduction2.0 Nonthermal preservation processes2.1 High pressure processing2.1.1 Pressure effects on viruses2.1.2. Comparison of HPP inactivation of various human norovirus surrogates2.1.3 Oyster and bivalve mollusks processing2.2 Irradiation2.3 Pulsed electric field2.4 High-intensity pulsed light2.5 High power ultrasound3.0 Sanitizers used in food processing3.1 Chlorine3.2 Organic acid based sanitizers3.3 Electrolyzed water3.4 Chlorine dioxide4.0 Summary and conclusions4.2 References16. Natural Virucidal Compounds in Foodsright, Damian H. Gilling1.0 Introduction1.1 Types of plant antimicrobials2.0 Antiviral activity of compounds from plants2.1 Efficacy of plant antimicrobials against enveloped viruses2.2 Efficacy of plant antimicrobials against non-enveloped viruses3.0 Mechanisms of antiviral action3.1 Mechanisms of antiviral activity against enveloped viruses3.2 Mechanisms of antiviral activity against non-enveloped viruses4.0 Conclusions5.0 References17. Risk Assessment for Foodborne VirusesElizabeth Bradshaw and Lee-Ann Jaykus1.0 Introduction to risk analysis1.1 Risk management1.2 Risk communication1.3 Risk assessment2.0 Microbial risk assessment3.0 Process of risk assessment4.0 Structure of risk assessment4.1 Hazard identification4.2 Exposure assessment4.3 Hazard characterization4.4 Risk characterization5.0 Elements of risk assessment in food virology5.1 Hazard assessment, risk profiles, and meta analysis5.2 Data for exposure modeling5.3 Predictive microbiology5.4 Hazard characterization6.0 Recent risk modeling efforts in food virology6.1 Fresh produce6.1.a Irrigation with wastewater or recycled water6.1.b Fresh produce along the farm-to-fork chain6.2 Molluscan shellfish6.3 RTE foods and food handling6.4 Synthesis comments7.0 Conclusions8.0 Acknowledgements9.0 ReferencesIndex
Erscheint lt. Verlag | 25.8.2016 |
---|---|
Reihe/Serie | Food Microbiology and Food Safety |
Food Microbiology and Food Safety | |
Research and Development | Research and Development |
Zusatzinfo | XIII, 512 p. 26 illus., 13 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Medizin / Pharmazie ► Gesundheitsfachberufe |
Medizin / Pharmazie ► Medizinische Fachgebiete ► Mikrobiologie / Infektologie / Reisemedizin | |
Studium ► 2. Studienabschnitt (Klinik) ► Pharmakologie / Toxikologie | |
Naturwissenschaften ► Biologie ► Mikrobiologie / Immunologie | |
Technik ► Lebensmitteltechnologie | |
Schlagworte | Enteric Viruses • epidemiology of food-borne viruses • Molecular Virology • risk assessment for foodborne viruses • virus recovery from foods |
ISBN-10 | 3-319-30723-1 / 3319307231 |
ISBN-13 | 978-3-319-30723-7 / 9783319307237 |
Haben Sie eine Frage zum Produkt? |
Größe: 6,0 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich