Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Computational Biomechanics (eBook)

Theoretical Background and Biological/Biomedical Problems
eBook Download: PDF
2012 | 2012
XII, 196 Seiten
Springer Tokyo (Verlag)
978-4-431-54073-1 (ISBN)

Lese- und Medienproben

Computational Biomechanics - Masao Tanaka, Shigeo Wada, Masanori Nakamura
Systemvoraussetzungen
63,06 inkl. MwSt
(CHF 61,60)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This introductory textbook on computational biomechanics for in silico medicine is ideal for graduate school-level engineering students and young researchers in bioengineering and biomedicine. It introduces the development of physiome and systems biology.
Rapid developments have taken place in biological/biomedical measurement and imaging technologies as well as in computer analysis and information technologies. The increase in data obtained with such technologies invites the reader into a virtual world that represents realistic biological tissue or organ structures in digital form and allows for simulation and what is called “in silico medicine.” This volume is the third in a textbook series and covers both the basics of continuum mechanics of biosolids and biofluids and the theoretical core of computational methods for continuum mechanics analyses. Several biomechanics problems are provided for better understanding of computational modeling and analysis. Topics include the mechanics of solid and fluid bodies, fundamental characteristics of biosolids and biofluids, computational methods in biomechanics analysis/simulation, practical problems in orthopedic biomechanics, dental biomechanics, ophthalmic biomechanics, cardiovascular biomechanics, hemodynamics, cell mechanics, and model-, rule-, and image-based methods in computational biomechanics analysis and simulation. The book is an excellent resource for graduate school-level engineering students and young researchers in bioengineering and biomedicine.

Chapter 1: Introduction1.1  Biomechanics: Mechanics in/for biology and medicine1.2  One-dimensional mechanics of biosolids and biofluids1.2.1 A dip into biosolid mechanics1.2.2 A dip into biofluid mechanics1.3  Addendum to one-dimensional mechanics1.3.1 Law of mixture1.3.2 Discrete model of continuum1.4  Biomechanics in biology and medicine: a tiny showcaseReferencesChapter 2: Mechanics of biosolids and computational analysis2.1 Fundamentals of solid mechanics2.1.1 Stress and force: Equilibrium equations2.1.2.Strain and displacement: Kinematic equations2.1.3 Constitutive equiations: Linear elasticity2.1.4 Constitutive equations: Nonlinear elasticity2.2 Mechanical properties of bone    2.1.2 Cortical bone    2.2.2 Cancellous bone2.3 Mechanical properties of soft tissue    2.3.1 Arteial wall    2.3.2 Skin    2.3.3 Cornea2.4 Principles of stationary potential energy and virtual work    2.4.1 Boundary value problems for equilibrium    2.4.2 Principle of virtual work    2.4.3 Principle of stationary potential energy2.5 Finite element method    2.5.1 Finite element discretization and approximation    2.5.2 Finite element equations for small strain linear elasticity    2.5.3 Finite element equations for finite strain hyperelasticity    2.5.4 Shape functions: Simplex, complex and multiplex elements    2.5.5 Shape functions: Isoparametric elements2.6 Computational biomechanics problems    2.6.1 Lattice continuum modeling for cancellous bone structure    2.6.2 Scoliotic deformation analysis of spinal column     2.6.3 Stress analysis of temporomandibular joint disc     2.6.4 Deformation analysis of cornea: inverse problems    2.6.5 Stress analysis of proximal femur: Image-based analysis and simulation2.7 SummaryReferencesChapter 3 Mechanics of biofluid and computational analysis3.1 Fundamentals of fluid mechanics   3.1.1 Viscous and inviscid fluid   3.1.2 Newtonian and non-Newtonian fluid   3.1.3 Compressible and incompressible fluids3.2 Dimensionless numbers   3.2.1 Reynolds number   3.2.2 Womersley number3.3 Eulerian and Lagrangian representations of fluid flow3.4 Governing equation of fluid flow   3.4.1 Equation of continuity   3.4.2 Navier-Stokes equation3.5 Euler-based Computational Fluid Dynamics   3.5.1 Discretization   3.5.2 Finite Volume Method3.6 Lagrange-based Computational Fluid Dynamics   3.6.1 Governing equations   3.6.2 Modeling of the interaction between particles   3.6.3 Algorithm of the MPS method3.7 Applications of Flow simulations to Biomechanical Problems   3.7.1 Analysis of Blood Flow in the Aorta   3.7.2 Analysis of Blood Flow in the Left Ventricle for the Interpretation of Color M-mode Doppler Echocardiogram   3.7.3 Fluid-Structure Interaction Analysis of Blood Flow for Differentiation of Vascular Diseases by Pulse Wave Propagation WAVE PROPAGATION   3.7.4 PrimaryThrombus Formation by Platelet Aggregation by the Particle Method   3.7.5 Fluid-Structure Interaction Analysis on the Behavior of Spherical Embolic Agents in a Vascular Bifurcation toward Pre-operation Planning of Transcatheter Embolization3.8 SummaryReferencesChapter 4:  Spring Network Modeling based on the Energy Concept4.1 Fundamentals of spring network model4.1.1 Single spring model4.1.2 Network spring model4.1.3 Bending spring model4.1.4 Extended spring model4.1.5 Extension to continuum model4.2 Formulation and solving method4.2.1 Minimum energy problem4.2.2 Solving method4.3 Parameter identification of the spring network model4.3.1 Stretching spring constant4.3.2 Bending spring constant4.4 Mechanical behavior of a single red blood cell4.4.1 Minimum energy problem to determine the shape of RBC4.4.2 RBC behavior in a shear flow4.5 Mechanical properties of a eukaryotic cell4.5.1 Mechanocell model4.5.2 Application of mechanocell model to micro biomechanics4.6 Aneurysm development4.6.1 Modeling of aneurysm4.6.2 Rule-based simulation of aneurysm development4.7 Multiscale blood flow4.7.1 Modeling of multiple red blood cell flow4.7.2 Multiscale simulation of blood flow4.8 Summary References Chapter 5 Toward in silico medicine5.1 Computational biomechanics in medical engineering 5.2 Model-based diagnosis5.3 Multiscale modeling and analysis 5.4 Subject-/patient-specific modeling and simulation5.5 Towards predictive medicineChapter 2: Mechanics of biosolids and computational analysis2.1 Fundamentals of solid mechanics2.1.1 Stress and force: Equilibrium equations2.1.2.Strain and displacement: Kinematic equations2.1.3 Constitutive equiations: Linear elasticity2.1.4 Constitutive equations: Nonlinear elasticity2.2 Mechanical properties of bone    2.1.2 Cortical bone    2.2.2 Cancellous bone2.3 Mechanical properties of soft tissue    2.3.1 Arteial wall    2.3.2 Skin    2.3.3 Cornea2.4 Principles of stationary potential energy and virtual work    2.4.1 Boundary value problems for equilibrium    2.4.2 Principle of virtual work    2.4.3 Principle of stationary potential energy2.5 Finite element method    2.5.1 Finite element discretization and approximation    2.5.2 Finite element equations for small strain linear elasticity    2.5.3 Finite element equations for finite strain hyperelasticity    2.5.4 Shape functions: Simplex, complex and multiplex elements    2.5.5 Shape functions: Isoparametric elements2.6 Computational biomechanics problems    2.6.1 Lattice continuum modeling for cancellous bone structure    2.6.2 Scoliotic deformation analysis of spinal column     2.6.3 Stress analysis of temporomandibular joint disc     2.6.4 Deformation analysis of cornea: inverse problems    2.6.5 Stress analysis of proximal femur: Image-based analysis and simulation2.7 SummaryReferencesChapter 3 Mechanics of biofluid and computational analysis3.1 Fundamentals of fluid mechanics   3.1.1 Viscous and inviscid fluid   3.1.2 Newtonian and non-Newtonian fluid   3.1.3 Compressible and incompressible fluids3.2 Dimensionless numbers   3.2.1 Reynolds number   3.2.2 Womersley number3.3 Eulerian and Lagrangian representations of fluid flow3.4 Governing equation of fluid flow   3.4.1 Equation of continuity   3.4.2 Navier-Stokes equation3.5 Euler-based Computational Fluid Dynamics   3.5.1 Discretization   3.5.2 Finite Volume Method3.6 Lagrange-based Computational Fluid Dynamics   3.6.1 Governing equations   3.6.2 Modeling of the interaction between particles   3.6.3 Algorithm of the MPS method3.7 Applications of Flow simulations to Biomechanical Problems   3.7.1 Analysis of Blood Flow in the Aorta   3.7.2 Analysis of Blood Flow in the Left Ventricle for the Interpretation of Color M-mode Doppler Echocardiogram   3.7.3 Fluid-Structure Interaction Analysis of Blood Flow for Differentiation of Vascular Diseases by Pulse Wave Propagation WAVE PROPAGATION   3.7.4 PrimaryThrombus Formation by Platelet Aggregation by the Particle Method   3.7.5 Fluid-Structure Interaction Analysis on the Behavior of Spherical Embolic Agents in a Vascular Bifurcation toward Pre-operation Planning of Transcatheter Embolization3.8 SummaryReferencesChapter 4:  Spring Network Modeling based on the Energy Concept4.1 Fundamentals of spring network model4.1.1 Single spring model4.1.2 Network spring model4.1.3 Bending spring model4.1.4 Extended spring model4.1.5 Extension to continuum model4.2 Formulation and solving method4.2.1 Minimum energy problem4.2.2 Solving method4.3 Parameter identification of the spring network model4.3.1 Stretching spring constant4.3.2 Bending spring constant4.4 Mechanical behavior of a single red blood cell4.4.1 Minimum energy problem to determine the shape of RBC4.4.2 RBC behavior in a shear flow4.5 Mechanical properties of a eukaryotic cell4.5.1 Mechanocell model4.5.2 Application of mechanocell model to micro biomechanics4.6 Aneurysm development4.6.1 Modeling of aneurysm4.6.2 Rule-based simulation of aneurysm development4.7 Multiscale blood flow4.7.1 Modeling of multiple red blood cell flow4.7.2 Multiscale simulation of blood flow4.8 Summary References Chapter 5 Toward in silico medicine5.1 Computational biomechanics in medical engineering 5.2 Model-based diagnosis5.3 Multiscale modeling and analysis 5.4 Subject-/patient-specific modeling and simulation5.5 Towards predictive medicineChapter 3 Mechanics of biofluid and computational analysis3.1 Fundamentals of fluid mechanics   3.1.1 Viscous and inviscid fluid   3.1.2 Newtonian and non-Newtonian fluid   3.1.3 Compressible and incompressible fluids3.2 Dimensionless numbers   3.2.1 Reynolds number   3.2.2 Womersley number3.3 Eulerian and Lagrangian representations of fluid flow3.4 Governing equation of fluid flow   3.4.1 Equation of continuity   3.4.2 Navier-Stokes equation3.5 Euler-based Computational Fluid Dynamics   3.5.1 Discretization   3.5.2 Finite Volume Method3.6 Lagrange-based Computational Fluid Dynamics   3.6.1 Governing equations   3.6.2 Modeling of the interaction between particles   3.6.3 Algorithm of the MPS method3.7 Applications of Flow simulations to Biomechanical Problems   3.7.1 Analysis of Blood Flow in the Aorta   3.7.2 Analysis of Blood Flow in the Left Ventricle for the Interpretation of Color M-mode Doppler Echocardiogram   3.7.3 Fluid-Structure Interaction Analysis of Blood Flow for Differentiation of Vascular Diseases by Pulse Wave Propagation WAVE PROPAGATION   3.7.4 PrimaryThrombus Formation by Platelet Aggregation by the Particle Method   3.7.5 Fluid-Structure Interaction Analysis on the Behavior of Spherical Embolic Agents in a Vascular Bifurcation toward Pre-operation Planning of Transcatheter Embolization3.8 SummaryReferencesChapter 4:  Spring Network Modeling based on the Energy Concept4.1 Fundamentals of spring network model4.1.1 Single spring model4.1.2 Network spring model4.1.3 Bending spring model4.1.4 Extended spring model4.1.5 Extension to continuum model4.2 Formulation and solving method4.2.1 Minimum energy problem4.2.2 Solving method4.3 Parameter identification of the spring network model4.3.1 Stretching spring constant4.3.2 Bending spring constant4.4 Mechanical behavior of a single red blood cell4.4.1 Minimum energy problem to determine the shape of RBC4.4.2 RBC behavior in a shear flow4.5 Mechanical properties of a eukaryotic cell4.5.1 Mechanocell model4.5.2 Application of mechanocell model to micro biomechanics4.6 Aneurysm development4.6.1 Modeling of aneurysm4.6.2 Rule-based simulation of aneurysm development4.7 Multiscale blood flow4.7.1 Modeling of multiple red blood cell flow4.7.2 Multiscale simulation of blood flow4.8 Summary References Chapter 5 Toward in silico medicine5.1 Computational biomechanics in medical engineering 5.2 Model-based diagnosis5.3 Multiscale modeling and analysis 5.4 Subject-/patient-specific modeling and simulation5.5 Towards predictive medicineChapter 4:  Spring Network Modeling based on the Energy Concept4.1 Fundamentals of spring network model4.1.1 Single spring model4.1.2 Network spring model4.1.3 Bending spring model4.1.4 Extended spring model4.1.5 Extension to continuum model4.2 Formulation and solving method4.2.1 Minimum energy problem4.2.2 Solving method4.3 Parameter identification of the spring network model4.3.1 Stretching spring constant4.3.2 Bending spring constant4.4 Mechanical behavior of a single red blood cell4.4.1 Minimum energy problem to determine the shape of RBC4.4.2 RBC behavior in a shear flow4.5 Mechanical properties of a eukaryotic cell4.5.1 Mechanocell model4.5.2 Application of mechanocell model to micro biomechanics4.6 Aneurysm development4.6.1 Modeling of aneurysm4.6.2 Rule-based simulation of aneurysm development4.7 Multiscale blood flow4.7.1 Modeling of multiple red blood cell flow4.7.2 Multiscale simulation of blood flow4.8 Summary References Chapter 5 Toward in silico medicine5.1 Computational biomechanics in medical engineering 5.2 Model-based diagnosis5.3 Multiscale modeling and analysis 5.4 Subject-/patient-specific modeling and simulation5.5 Towards predictive medicineChapter 5 Toward in silico medicine5.1 Computational biomechanics in medical engineering 5.2 Model-based diagnosis5.3 Multiscale modeling and analysis 5.4 Subject-/patient-specific modeling and simulation5.5 Towards predictive medicine

Erscheint lt. Verlag 31.3.2012
Reihe/Serie A First Course in “In Silico Medicine”
Verlagsort Tokyo
Sprache englisch
Themenwelt Medizin / Pharmazie Physiotherapie / Ergotherapie Orthopädie
Studium 1. Studienabschnitt (Vorklinik) Physiologie
Technik Medizintechnik
Schlagworte cardiac disease • computational biomechanics • Computational modeling • electrophysiology
ISBN-10 4-431-54073-3 / 4431540733
ISBN-13 978-4-431-54073-1 / 9784431540731
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 6,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Hans-Christian Pape; Armin Kurtz; Stefan Silbernagl

eBook Download (2023)
Georg Thieme Verlag KG
CHF 107,45

von Hans-Christian Pape; Armin Kurtz; Stefan Silbernagl

eBook Download (2023)
Georg Thieme Verlag KG
CHF 107,45