Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Advances in Microbial Physiology

Advances in Microbial Physiology (eBook)

eBook Download: PDF | EPUB
2009 | 1. Auflage
202 Seiten
Elsevier Science (Verlag)
978-0-08-088831-6 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
137,00 inkl. MwSt
(CHF 133,85)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Advances in Microbial Physiology is one of the most successful and prestigious series from Academic Press, an imprint of Elsevier. It publishes topical and important reviews, interpreting physiology to include all material that contributes to our understanding of how microorganisms and their component parts work. First published in 1967, it is now in its 56th volume. The Editors have always striven to interpret microbial physiology in the broadest context and have never restricted the contents to traditional views of whole cell physiology. Now edited by Professor Robert Poole, University of Sheffield, Advances in Microbial Physiology continues to be an influential and very well reviewed series. - 2007 impact factor of 4.9, placing it 13th in the highly competitive category of microbiology - Contributions by leading international scientists - The latest research in microbial physiology
Advances in Microbial Physiology is one of the most successful and prestigious series from Academic Press, an imprint of Elsevier. It publishes topical and important reviews, interpreting physiology to include all material that contributes to our understanding of how microorganisms and their component parts work. First published in 1967, it is now in its 56th volume. The Editors have always striven to interpret microbial physiology in the broadest context and have never restricted the contents to traditional views of whole cell physiology. Now edited by Professor Robert Poole, University of Sheffield, Advances in Microbial Physiology continues to be an influential and very well reviewed series. - 2007 impact factor of 4.9, placing it 13th in the highly competitive category of microbiology- Contributions by leading international scientists- The latest research in microbial physiology

Front Cover 1
Advances in Microbial Physiology 2
Copyright Page 5
Contents 6
Contributors to Volume 56 8
All Stressed Out. Salmonella Pathogenesis and Reactive Nitrogen Species 10
Abbreviations 11
1. Overview 12
2. Reactive Nitrogen Species (RNS): An Important Component of the Innate Immune System 12
3. Salmonella: Epidemiology 17
4. Salmonella and RNS 21
5. Nitrate Reductase Systems 27
6. Conclusion 29
References 29
Microbial Metropolis 38
Abbreviations 39
1. Introduction 40
2. A Multiplicity of Manifestations 45
3. Sticking to Things 49
4. The Matrix 54
5. On Communicating: Quorum Sensing (QS) 57
6. Biofilm Formation 62
7. Evolution and Social Microbiology 64
8. Model Building: The Glass Bead Game? 72
9. Multicellular Development – Getting it all Together 77
Postscript 85
References 85
Carbon Monoxide in Biology and Microbiology: Surprising Roles for the "Detroit Perfume" 94
Abbreviations 96
1. Introduction 97
2. The Chemistry of CO and Other Heme Ligands and Implications for Biological Interactions 100
3. CO in the Biosphere and the Origin of Life 106
4. CO as a Heme Ligand 107
5. CO as an Inhibitor of Respiration 108
6. Bacterial Metabolism of CO 109
7. Microbial HO 115
8. Experimental Administration of CO and the Development of CO-RMs 121
9. New Applications of CO in Physiology and Medicine 129
10. Consequences of Microbial Exposure to CO and CO-RMs 145
11. Future Prospects and Unanswered Questions 156
Acknowledgments 156
References 157
Author Index 178
A 178
B 178
C 180
D 181
E 182
F 182
G 183
H 184
I 185
J 185
K 185
L 186
M 187
N 189
O 189
P 190
Q 191
R 191
S 192
T 193
U/ 194
V 194
W 195
X 196
Y 196
Z 196
Subject Index 198
A 198
B 198
C 198
D 199
E 199
F 199
G 199
H 199
I 200
K 200
L 200
M 200
N 200
O 200
P 200
Q 201
R 201
S 201
T 202
V 202
W 202
Z 202

All Stressed Out. Salmonella Pathogenesis and Reactive Nitrogen Species


K. Prior1, I. Hautefort2, J.C.D. Hinton3, D.J. Richardson1 and G. Rowley1
1School of Biological Sciences, University of East Anglia, Norwich, UK
2Molecular Microbiology Group, Institute of Food Research, Norwich Research Park, Norwich, UK
3School of Genetics and Microbiology, Trinity College, Dublin, Ireland
Abstract
Bacterial pathogens must overcome a range of challenges during the process of infecting their host. The ability of a pathogen to sense and respond appropriately to changes in host environment is vital if the pathogen is to succeed. Mammalian defense strategies include the use of barriers like skin and epithelial surfaces, the production of a chemical arsenal, such as stomach acid and reactive oxygen and nitrogen species, and a highly coordinated cellular and humoral immune response.
Salmonella serovars are significant human and animal pathogens which have evolved several mechanisms to overcome mammalian host defense. Here we focus on the interplay which occurs between Salmonella and the host during the infection process, with particular emphasis on the complex bacterial response to reactive nitrogen species produced by the host. We discuss recent advances in our understanding of the key mechanisms which confer bacterial resistance to nitrogen species, which in response to nitric oxide include the flavohemoglobin, HmpA, the flavorubredoxin, NorV, and the cytochrome c nitrite reductase, NrfA, whilst in response to nitrate include a repertoire of nitrate reductases. Elucidating the precise role of different aspects of microbial physiology, nitrogen metabolism, and detoxification during infection will provide valuable insight into novel opportunities and potential targets for the development of therapeutic approaches.

Abbreviations


ATR: acid tolerance response

eNOS: endothelial NOS

Hb(Fe ii): oxy-ferrous hemoglobin

IFN-?: gamma-interferon

IFN-?R: gamma-interferon receptor

IL-1: interleukin-1

iNOS: inducible NOS

IRF-1: interferon regulatory factor 1

JAK: Janus kinase

LPS: lipopolysaccharide

MDR: multi-drug resistant

NF-?B: a transcription factor (nuclear factor kappa-light-chain-enhancer of activated B cells)

nNOS: neuronal NOS

NOS: nitric oxide synthase

NR-A: nitrate reductase system comprising NarGHJI operon

NR-Z: nitrate reductase system comprising NarZYWV operon

PAMP: pathogen-associated molecular pattern

PMN: polymorphonuclear leukocytes

RNI: reactive nitrogen intermediate

RNS: reactive nitrogen species

ROI: reactive oxygen intermediate

ROS: reactive oxygen species

SCV: Salmonella-containing vacuole

SPI-1, SPI-2: Salmonella Pathogenicity Island 1, 2

STAT: signal transducers and activators of transcription

TGF-?: transforming growth factor beta

TLR: Toll-like receptor

TNF-?: tumor necrosis factor alpha

TTSS: type-III secretion system

1. Overview

The ability of a pathogen to sense and respond to its ever changing environment is critical to its success. Using Salmonella enterica serovar Typhimurium ( S. Typhimurium) as a model intracellular organism, this review explores the interplay between the host and pathogen during the infection process. We discuss the strategies that Salmonella, and other pathogens, employ to respond to reactive nitrogen species (RNS) produced by the host to resist bacterial infection.

2. Reactive Nitrogen Species (RNS): An important component of the innate immune system

2.1. Innate Mammalian Defense
Innate host defense systems respond non-specifically to the presence of pathogens. The responses do not confer long-lasting or protective immunity or the establishment of immunological memory, such as occurs in the adaptive immune response (Levy et al., 2005). However, activity of the innate defenses may later result in activation of the adaptive immune system, through presentation of antigens (Kindt et al., 2007).
Innate immunity includes barrier defenses, such as the integrity of the skin, which prevents entry of pathogens. The skin surface is also maintained at a slightly acidic pH by secretions, produced by hair follicles which contain lactic acid and fatty acids (Maggini et al., 2007). Ciliary activity in the lungs expels foreign particles, including pathogenic microbes, by beating of the hair-like cilia in an upward direction (Levy et al., 2005). Coughing and sneezing responses also expel irritants. Mucus is produced in both the respiratory and gastrointestinal tracts, and this can trap microbes, preventing their further activity (Levy et al., 2005). The normal flushing by tears, saliva, and urine also removes pathogens. Indeed, tears and saliva contain lysozyme which can destroy the cell membrane of gram-positive bacteria, leading to bacterial lysis (Abergel et al., 2007). The immune processes function together to help mammals to prevent infection by bacterial pathogens.
2.1.1. Stomach Acidity and RNS
One of the first innate mammalian defenses to be encountered by ingested enteric pathogens is the acidic environment of the stomach. Here, acidity may dip as low as pH 1 in the immediate post-prandial period (Levy et al., 2005; Rychlik and Barrow, 2005). Bacterial survival of the transit through the stomach is achieved through activation of the acid tolerance response (ATR), the mechanisms of which will be discussed in more detail later.
As well as directly stressing the bacteria, the acidity of the stomach converts dietary and salivary nitrite to nitric oxide (NO), to generate nitrosative stress which the bacteria must also survive. Nitrosative stress can cause changes to bacterial proteins which inhibit their normal functions, or inhibit DNA replication (Fang, 2004), rendering the bacteria non-viable. Exogenous nitrogen species are introduced to the gut in the diet. Most dietary nitrate present in the gastrointestinal tract is produced from vegetables (Lundberg et al., 2004); beets, celery, and leafy vegetables are especially rich in nitrates (Bryan, 2006). In the oral cavity, salivary nitrate is reduced to nitrite by commensal bacteria on the tongue. In the stomach, the nitrite is acidified in a reaction with stomach acid, to nitrous acid (HNO 2) (Equation 1(a)). Nitrous acid comprises dinitrogen trioxide (N 2O 3) as an intermediary compound (Equation 1(b)) with water, which subsequently disproportionates to other nitrogen species, including NO (Equation 1(c)) (Benjamin et al., 1994; van Wonderen et al., 2008). Nitrite is also ingested in the diet, most often with cured and processed meats, to which nitrite is added as a preservative (Bryan, 2006). Residual nitrate and nitrite are ultimately excreted in the urine, at levels similar to those ingested in the diet (Lundberg et al., 2004), ensuring that in the normal, uninfected system, a steady state of nitrate and nitrite levels is maintained. Feces and sweat have been shown to constitute only minor routes for excretion of nitrate and nitrite ions (Weller et al., 1996; Ten Bruggencate et al., 2004). Nitrogen species are consequently found distributed throughout the length of the gastrointestinal tract, representing a serious problem for enteric pathogens.
Equation (1a), (1b) and (1c)– The disproportionation of nitrite to NO
(1a)
(1b)
(1c)
2.1.2. Macrophages and RNS
NO is produced by the normal constitutive activity of the l-arginine–NO pathway, which maintains various physiological functions like vascular tone, neurotransmission, and platelet function (Levy et al., 2005). Endogenous NO is vital as a signaling molecule for many processes in the mammalian system, and is produced from the amino acid l-arginine and molecular oxygen by NO synthases (NOS) (Nelson and Cox, 2004). There are three NOS isoforms; endothelial NOS (eNOS), neuronal NOS (nNOS), and inducible NOS (iNOS). (Moncada et al., 1997). Basal plasma NO levels are generated by the endogenous l-arginine–NO pathway. The NO can be detoxified by reacting with oxy-ferrous hemoglobin (Hb(FeII)) (Gow and Stamler, 1998), to produce nitrate (Lundberg et al., 2004).
Macrophages use iNOS to produce NO, without the need for elevated intracellular calcium (Ca 2+) which is required by eNOS and nNOS (Marletta, 1994; Nathan and Xie, 1994; Griffith and Stuehr, 1995; Michel...

Erscheint lt. Verlag 10.11.2009
Mitarbeit Herausgeber (Serie): Robert K. Poole
Sprache englisch
Themenwelt Studium 1. Studienabschnitt (Vorklinik) Physiologie
Naturwissenschaften Biologie Mikrobiologie / Immunologie
Naturwissenschaften Biologie Zoologie
Technik
ISBN-10 0-08-088831-3 / 0080888313
ISBN-13 978-0-08-088831-6 / 9780080888316
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 1,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 767 KB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Hans-Christian Pape; Armin Kurtz; Stefan Silbernagl

eBook Download (2023)
Georg Thieme Verlag KG
CHF 107,45

von Hans-Christian Pape; Armin Kurtz; Stefan Silbernagl

eBook Download (2023)
Georg Thieme Verlag KG
CHF 107,45