Computational Geometry of Positive Definite Quadratic Forms
Polyhedral Reduction Theories, Algorithms, and Applications
2009
American Mathematical Society (Verlag)
978-0-8218-4735-0 (ISBN)
American Mathematical Society (Verlag)
978-0-8218-4735-0 (ISBN)
Starting from classical arithmetical questions on quadratic forms, this book takes the reader step by step through the connections with lattice sphere packing and covering problems. As a model for polyhedral reduction theories of positive definite quadratic forms, it presents Minkowski's classical theory.
Starting from classical arithmetical questions on quadratic forms, this book takes the reader step by step through the connections with lattice sphere packing and covering problems. As a model for polyhedral reduction theories of positive definite quadratic forms, Minkowski's classical theory is presented, including an application to multidimensional continued fraction expansions. The reduction theories of Voronoi are described in great detail, including full proofs, new views, and generalizations that cannot be found elsewhere. Based on Voronoi's second reduction theory, the local analysis of sphere coverings and several of its applications are presented. These include the classification of totally real thin number fields, connections to the Minkowski conjecture, and the discovery of new, sometimes surprising, properties of exceptional structures such as the Leech lattice or the root lattices. Throughout this book, special attention is paid to algorithms and computability, allowing computer-assisted treatments. Although dealing with relatively classical topics that have been worked on extensively by numerous authors, this book is exemplary in showing how computers may help to gain new insights.
Starting from classical arithmetical questions on quadratic forms, this book takes the reader step by step through the connections with lattice sphere packing and covering problems. As a model for polyhedral reduction theories of positive definite quadratic forms, Minkowski's classical theory is presented, including an application to multidimensional continued fraction expansions. The reduction theories of Voronoi are described in great detail, including full proofs, new views, and generalizations that cannot be found elsewhere. Based on Voronoi's second reduction theory, the local analysis of sphere coverings and several of its applications are presented. These include the classification of totally real thin number fields, connections to the Minkowski conjecture, and the discovery of new, sometimes surprising, properties of exceptional structures such as the Leech lattice or the root lattices. Throughout this book, special attention is paid to algorithms and computability, allowing computer-assisted treatments. Although dealing with relatively classical topics that have been worked on extensively by numerous authors, this book is exemplary in showing how computers may help to gain new insights.
Erscheint lt. Verlag | 30.1.2009 |
---|---|
Reihe/Serie | University Lecture Series |
Zusatzinfo | Illustrations |
Verlagsort | Providence |
Sprache | englisch |
Gewicht | 341 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
ISBN-10 | 0-8218-4735-X / 082184735X |
ISBN-13 | 978-0-8218-4735-0 / 9780821847350 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
unlock your imagination with the narrative of numbers
Buch | Softcover (2024)
Advantage Media Group (Verlag)
CHF 27,90
Seltsame Mathematik - Enigmatische Zahlen - Zahlenzauber
Buch | Softcover (2024)
BoD – Books on Demand (Verlag)
CHF 27,95
A Story of the Numbers You Can't Count On
Buch | Softcover (2023)
Princeton University Press (Verlag)
CHF 29,65