Nicht aus der Schweiz? Besuchen Sie lehmanns.de
The Top Ten Algorithms in Data Mining -

The Top Ten Algorithms in Data Mining

Xindong Wu, Vipin Kumar (Herausgeber)

Buch | Hardcover
230 Seiten
2009
Chapman & Hall/CRC (Verlag)
978-1-4200-8964-6 (ISBN)
CHF 165,80 inkl. MwSt
Identifying some of the most influential algorithms that are widely used in the data mining community, this book provides a description of each algorithm, discusses the impact of the algorithms, and reviews research on the algorithms.
Identifying some of the most influential algorithms that are widely used in the data mining community, The Top Ten Algorithms in Data Mining provides a description of each algorithm, discusses its impact, and reviews current and future research. Thoroughly evaluated by independent reviewers, each chapter focuses on a particular algorithm and is written by either the original authors of the algorithm or world-class researchers who have extensively studied the respective algorithm.

The book concentrates on the following important algorithms: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. Examples illustrate how each algorithm works and highlight its overall performance in a real-world application. The text covers key topics—including classification, clustering, statistical learning, association analysis, and link mining—in data mining research and development as well as in data mining, machine learning, and artificial intelligence courses.

By naming the leading algorithms in this field, this book encourages the use of data mining techniques in a broader realm of real-world applications. It should inspire more data mining researchers to further explore the impact and novel research issues of these algorithms.

University of Vermont, Burlington, USA University of Minnesota, Minneapolis, USA

C4.5. K-Means. SVM: Support Vector Machines. A priori. EM. PageRank. AdaBoost. kNN: k-Nearest Neighbors. Naïve Bayes. CART: Classification and Regression Trees. Index.

Erscheint lt. Verlag 15.4.2009
Reihe/Serie Chapman & Hall/CRC Data Mining and Knowledge Discovery Series
Zusatzinfo 26 Tables, black and white; 53 Illustrations, black and white
Sprache englisch
Maße 156 x 234 mm
Gewicht 590 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Algorithmen
ISBN-10 1-4200-8964-1 / 1420089641
ISBN-13 978-1-4200-8964-6 / 9781420089646
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85