The Top Ten Algorithms in Data Mining
Seiten
2009
Chapman & Hall/CRC (Verlag)
978-1-4200-8964-6 (ISBN)
Chapman & Hall/CRC (Verlag)
978-1-4200-8964-6 (ISBN)
Identifying some of the most influential algorithms that are widely used in the data mining community, this book provides a description of each algorithm, discusses the impact of the algorithms, and reviews research on the algorithms.
Identifying some of the most influential algorithms that are widely used in the data mining community, The Top Ten Algorithms in Data Mining provides a description of each algorithm, discusses its impact, and reviews current and future research. Thoroughly evaluated by independent reviewers, each chapter focuses on a particular algorithm and is written by either the original authors of the algorithm or world-class researchers who have extensively studied the respective algorithm.
The book concentrates on the following important algorithms: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. Examples illustrate how each algorithm works and highlight its overall performance in a real-world application. The text covers key topics—including classification, clustering, statistical learning, association analysis, and link mining—in data mining research and development as well as in data mining, machine learning, and artificial intelligence courses.
By naming the leading algorithms in this field, this book encourages the use of data mining techniques in a broader realm of real-world applications. It should inspire more data mining researchers to further explore the impact and novel research issues of these algorithms.
Identifying some of the most influential algorithms that are widely used in the data mining community, The Top Ten Algorithms in Data Mining provides a description of each algorithm, discusses its impact, and reviews current and future research. Thoroughly evaluated by independent reviewers, each chapter focuses on a particular algorithm and is written by either the original authors of the algorithm or world-class researchers who have extensively studied the respective algorithm.
The book concentrates on the following important algorithms: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. Examples illustrate how each algorithm works and highlight its overall performance in a real-world application. The text covers key topics—including classification, clustering, statistical learning, association analysis, and link mining—in data mining research and development as well as in data mining, machine learning, and artificial intelligence courses.
By naming the leading algorithms in this field, this book encourages the use of data mining techniques in a broader realm of real-world applications. It should inspire more data mining researchers to further explore the impact and novel research issues of these algorithms.
University of Vermont, Burlington, USA University of Minnesota, Minneapolis, USA
C4.5. K-Means. SVM: Support Vector Machines. A priori. EM. PageRank. AdaBoost. kNN: k-Nearest Neighbors. Naïve Bayes. CART: Classification and Regression Trees. Index.
Erscheint lt. Verlag | 15.4.2009 |
---|---|
Reihe/Serie | Chapman & Hall/CRC Data Mining and Knowledge Discovery Series |
Zusatzinfo | 26 Tables, black and white; 53 Illustrations, black and white |
Sprache | englisch |
Maße | 156 x 234 mm |
Gewicht | 590 g |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Informatik ► Theorie / Studium ► Algorithmen | |
ISBN-10 | 1-4200-8964-1 / 1420089641 |
ISBN-13 | 978-1-4200-8964-6 / 9781420089646 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Datenanalyse für Künstliche Intelligenz
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Auswertung von Daten mit pandas, NumPy und IPython
Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85