Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Vanishing and Finiteness Results in Geometric Analysis

A Generalization of the Bochner Technique
Buch | Hardcover
XIV, 282 Seiten
2008 | 2008
Springer Basel (Verlag)
978-3-7643-8641-2 (ISBN)

Lese- und Medienproben

Vanishing and Finiteness Results in Geometric Analysis - Stefano Pigola, Marco Rigoli, Alberto G Setti
CHF 119,80 inkl. MwSt
This book details very recent results in geometric analysis. Some of the applications presented concern the topology at infinity of submanifolds, Lp cohomology, metric rigidity of manifolds with positive spectrum, and structure theorems for Kähler manifolds.

This book presents very recent results involving an extensive use of analytical tools in the study of geometrical and topological properties of complete Riemannian manifolds. It analyzes in detail an extension of the Bochner technique to the non compact setting, yielding conditions which ensure that solutions of geometrically significant differential equations either are trivial (vanishing results) or give rise to finite dimensional vector spaces (finiteness results). The book develops a range of methods from spectral theory and qualitative properties of solutions of PDEs to comparison theorems in Riemannian geometry and potential theory.

All needed tools are described in detail, often with an original approach. Some of the applications presented concern the topology at infinity of submanifolds, Lp cohomology, metric rigidity of manifolds with positive spectrum, and structure theorems for Kähler manifolds.

The book is essentially self-contained and supplies in an original presentation the necessary background material not easily available in book form.

Harmonic, pluriharmonic, holomorphic maps and basic Hermitian and Kählerian geometry.- Comparison Results.- Review of spectral theory.- Vanishing results.- A finite-dimensionality result.- Applications to harmonic maps.- Some topological applications.- Constancy of holomorphic maps and the structure of complete Kähler manifolds.- Splitting and gap theorems in the presence of a Poincaré-Sobolev inequality.

Erscheint lt. Verlag 17.4.2008
Reihe/Serie Progress in Mathematics
Zusatzinfo XIV, 282 p.
Verlagsort Basel
Sprache englisch
Maße 155 x 235 mm
Gewicht 640 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte Analytische Geometrie • Calculus • comparison theorem • differential equation • geometric analysis • Hardcover, Softcover / Mathematik/Geometrie • HC/Mathematik/Analysis • HC/Mathematik/Geometrie • manifold • Potential Theory • Riemannian Geometry • Riemannian manifold
ISBN-10 3-7643-8641-X / 376438641X
ISBN-13 978-3-7643-8641-2 / 9783764386412
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich