Computational Learning Theory
Springer Berlin (Verlag)
978-3-540-65701-9 (ISBN)
Invited Lectures.- Theoretical Views of Boosting.- Open Theoretical Questions in Reinforcement Learning.- Learning from Random Examples.- A Geometric Approach to Leveraging Weak Learners.- Query by Committee, Linear Separation and Random Walks.- Hardness Results for Neural Network Approximation Problems.- Learning from Queries and Counterexamples.- Learnability of Quantified Formulas.- Learning Multiplicity Automata from Smallest Counterexamples.- Exact Learning when Irrelevant Variables Abound.- An Application of Codes to Attribute-Efficient Learning.- Learning Range Restricted Horn Expressions.- Reinforcement Learning.- On the Asymptotic Behavior of a Constant Stepsize Temporal-Difference Learning Algorithm.- On-line Learning and Expert Advice.- Direct and Indirect Algorithms for On-line Learning of Disjunctions.- Averaging Expert Predictions.- Teaching and Learning.- On Teaching and Learning Intersection-Closed Concept Classes.- Inductive Inference.- Avoiding Coding Tricks by Hyperrobust Learning.- Mind Change Complexity of Learning Logic Programs.- Statistical Theory of Learning and Pattern Recognition.- Regularized Principal Manifolds.- Distribution-Dependent Vapnik-Chervonenkis Bounds.- Lower Bounds on the Rate of Convergence of Nonparametric Pattern Recognition.- On Error Estimation for the Partitioning Classification Rule.- Margin Distribution Bounds on Generalization.- Generalization Performance of Classifiers in Terms of Observed Covering Numbers.- Entropy Numbers, Operators and Support Vector Kernels.
Erscheint lt. Verlag | 17.3.1999 |
---|---|
Reihe/Serie | Lecture Notes in Artificial Intelligence | Lecture Notes in Computer Science |
Zusatzinfo | X, 299 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 416 g |
Themenwelt | Informatik ► Theorie / Studium ► Algorithmen |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Algorithm analysis and problem complexity • Algorithmic Learning • Computational Learning • Hardcover, Softcover / Informatik, EDV/Informatik • HC/Informatik, EDV/Informatik • Inductive Inference • Künstliche Intelligenz • learning • Learning theory • Maschinelles Lernen • Online Learning • pattern recognition • Reinforcement Learning |
ISBN-10 | 3-540-65701-0 / 3540657010 |
ISBN-13 | 978-3-540-65701-9 / 9783540657019 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich