Stochastic Processes In Magnetic Resonance
Seiten
1995
World Scientific Publishing Co Pte Ltd (Verlag)
978-981-02-2227-7 (ISBN)
World Scientific Publishing Co Pte Ltd (Verlag)
978-981-02-2227-7 (ISBN)
This work describes methods for calculating magnetic resonance spectra which are observed in the presence of random processes. The emphasis is on the stochastic Liouville equation (SLE), developed mainly by Kubo and applied to magnetic resonance mostly by J.H. Freed and his co-workers.
This book describes methods for calculating magnetic resonance spectra which are observed in the presence of random processes. The emphasis is on the stochastic Liouville equation (SLE), developed mainly by Kubo and applied to magnetic resonance mostly by J H Freed and his co-workers. Following an introduction to the use of density matrices in magnetic resonance, a unified treatment of Bloch-Redfield relaxation theory and chemical exchange theory is presented. The SLE formalism is then developed and compared to the other relaxation theories. Methods for solving the SLE are explained in detail, and its application to a variety of problems in electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) is studied. In addition, experimental aspects relevant to the applications are discussed. Mathematical background material is given in appendices.
This book describes methods for calculating magnetic resonance spectra which are observed in the presence of random processes. The emphasis is on the stochastic Liouville equation (SLE), developed mainly by Kubo and applied to magnetic resonance mostly by J H Freed and his co-workers. Following an introduction to the use of density matrices in magnetic resonance, a unified treatment of Bloch-Redfield relaxation theory and chemical exchange theory is presented. The SLE formalism is then developed and compared to the other relaxation theories. Methods for solving the SLE are explained in detail, and its application to a variety of problems in electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) is studied. In addition, experimental aspects relevant to the applications are discussed. Mathematical background material is given in appendices.
Erscheint lt. Verlag | 1.7.1995 |
---|---|
Verlagsort | Singapore |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik |
Naturwissenschaften ► Chemie ► Analytische Chemie | |
ISBN-10 | 981-02-2227-0 / 9810222270 |
ISBN-13 | 978-981-02-2227-7 / 9789810222277 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
Springer Spektrum (Verlag)
CHF 62,95
Eine Einführung in die faszinierende Welt des Zufalls
Buch | Softcover (2024)
Springer Spektrum (Verlag)
CHF 55,95