Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Dehn Fillings of Knot Manifolds Containing Essential Twice-Punctured Tori - Steven Boyer, Cameron McA. Gordon, Xingru Zhang

Dehn Fillings of Knot Manifolds Containing Essential Twice-Punctured Tori

Buch | Softcover
106 Seiten
2024
American Mathematical Society (Verlag)
978-1-4704-6870-5 (ISBN)
CHF 137,45 inkl. MwSt
  • Versand in 10-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
We show that if a hyperbolic knot manifold M contains an essential twice-punctured torus F with boundary slope ? and admits a filling with slope ? producing a Seifert fibred space, then the distance between the slopes ? and ? is less than or equal to 5 unless M is the exterior of the figure eight knot.
We show that if a hyperbolic knot manifold M contains an essential twicepunctured torus F with boundary slope ? and admits a filling with slope ? producing a Seifert fibred space, then the distance between the slopes ? and ? is less than or equal to 5 unless M is the exterior of the figure eight knot. The result is sharp; the bound of 5 can be realized on infinitely many hyperbolic knot manifolds. We also determine distance bounds in the case that the fundamental group of the ?-filling contains no non-abelian free group. The proofs are divided into the four cases F is a semi-fibre, F is a fibre, F is non-separating but not a fibre, and F is separating but not a semi-fibre, and we obtain refined bounds in each case.

Steven Boyer, Universite du Quebec a Montreal, Quebec, Canada. Cameron McA. Gordon, University of Texas at Austin, Texas. Xingru Zhang, University at Buffalo, New York.

Chapters
1. Introduction
2. Examples
3. Proof of Theorems and
4. Initial assumptions and reductions
5. Culler-Shalen theory
6. Bending characters of triangle group amalgams
7. The proof of Theorem when $F$ is a semi-fibre
8. The proof of Theorem when $F$ is a fibre
9. Further assumptions, reductions, and background material
10. The proof of Theorem when $F$ is non-separating but not a fibre
11. Algebraic and embedded $n$-gons in $X^/epsilon $
12. The proof of Theorem when $F$ separates but is not a semi-fibre and $t_1^+ + t_1^- >
0$
13. Background for the proof of Theorem when $F$ separates and $t_1^+ = t_1^-=0$
14. Recognizing the figure eight knot exterior
15. Completion of the proof of Theorem when $/Delta (/alpha , /beta ) /geq 7$
16. Completion of the proof of Theorem when $X^-$ is not a twisted $I$-bundle
17. Completion of the proof of Theorem when ${/Delta }(/alpha ,/beta )=6$ and $d = 1$
18. The case that $F$ separates but not a semi-fibre, $t_1^+ = t_1^- = 0$, $d /ne 1$, and $M(/alpha )$ is very small
19. The case that $F$ separates but is not a semi-fibre, $t_1^+ = t_1^- = 0$, $d>1$, and $M(/alpha )$ is not very small
20. Proof of Theorem

Erscheinungsdatum
Reihe/Serie Memoirs of the American Mathematical Society ; Volume: 295 Number: 1469
Verlagsort Providence
Sprache englisch
Maße 178 x 254 mm
Gewicht 272 g
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 1-4704-6870-0 / 1470468700
ISBN-13 978-1-4704-6870-5 / 9781470468705
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
CHF 58,00
Nielsen Methods, Covering Spaces, and Hyperbolic Groups

von Benjamin Fine; Anja Moldenhauer; Gerhard Rosenberger …

Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 153,90