Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Multiverse Analysis

Computational Methods for Robust Results
Buch | Hardcover
200 Seiten
2024
Cambridge University Press (Verlag)
978-1-316-51878-6 (ISBN)
CHF 139,65 inkl. MwSt
  • Noch nicht erschienen (ca. Dezember 2024)
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
In the crisis of science, there is growing scepticism about the reliability and objectivity of research. This book develops computational multiverse methods to make evidence more transparent, and shows how to evaluate the credibility and robustness of research.
There are many ways of conducting an analysis, but most studies show only a few carefully curated estimates. Applied research involves a complex array of analytical decisions, often leading to a 'garden of forking paths' where each choice can lead to different results. By systematically exploring how alternative analytical choices affect the findings, Multiverse Analysis reveals the full range of estimates that the data can support and uncovers insights that single-path analyses often miss. It shows which modelling decisions are most critical to the results and reveals how data and assumptions work together to produce empirical estimates. Focusing on intuitive understanding rather than complex mathematics, and drawing on real-world datasets, this book provides a step-by-step guide to comprehensive multiverse analysis. Go beyond traditional, single-path methods and discover how multiverse analysis can lead to more transparent, illuminating, and persuasive empirical contributions to science.

Cristobal Young is Associate Professor of Sociology at Cornell University. He received his PhD from Princeton University in 2010. His first book, The Myth of Millionaire Tax Flight: How Place Still Matters for the Rich, was published with Stanford University Press in 2017. Erin Cumberworth is a sociologist who studies inequality and public policy. She received her Ph.D. from Stanford University in 2017.

Part I. Introduction: 1. The Many Worlds of Analysis; 2. The Multiverse as a Philosophy of Science; Part II. The Computational Multiverse: 3. Hurricane Names: An Applied Introduction; 4. The Multiverse Algorithm; 5. Empirical Multiverses; 6. Influence Analysis and Scope Conditions; 7. Good and Bad Controls; 8. Some Alternative Approaches; Part III. Expanding the Multiverse: 9. Functional Form Robustness; 10. Data Processing: Invisible Decisions that Matter; 11. A Data-Processing Multiverse: Re-Analysis of Regnerus (2012) and Critics; 12. Retractions in Social Science: Mis-Adventures in Data Processing; 13. Weights in the Multiverse; 14. Conclusion; Appendix: Coding with MULTIVRS in Stata.

Erscheint lt. Verlag 31.12.2024
Reihe/Serie Analytical Methods for Social Research
Zusatzinfo Worked examples or Exercises
Verlagsort Cambridge
Sprache englisch
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Sozialwissenschaften Soziologie Empirische Sozialforschung
ISBN-10 1-316-51878-7 / 1316518787
ISBN-13 978-1-316-51878-6 / 9781316518786
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85