Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Machine Learning for Networking -

Machine Learning for Networking

6th International Conference, MLN 2023, Paris, France, November 28–30, 2023, Revised Selected Papers
Buch | Softcover
X, 286 Seiten
2024 | 2024
Springer International Publishing (Verlag)
978-3-031-59932-3 (ISBN)
CHF 86,85 inkl. MwSt
This book constitutes the refereed proceedings of the 6th International Conference on Machine Learning for Networking, MLN 2023, held in Paris, France, during November 28–30, 2023.

The 16 full papers included in this book were carefully reviewed and selected from 34 submissions.

This book constitutes the refereed proceedings of the 6th International Conference on Machine Learning for Networking, MLN 2023, held in Paris, France, during November 28-30, 2023.

The 18 full papers included in this book were carefully reviewed and selected from 34 submissions. The conference aims at providing a top forum for researchers and practitioners to present and discuss new trends in machine learning, deep learning, pattern recognition and optimization for network architectures and services.

.- Machine Learning for IoT Devices Security Reinforcement.

.- All Attentive Deep Conditional Graph Generation for Wireless Network Topology Optimization.

.- Enhancing Social Media Profile Authenticity Detection A Bio Inspired Algorithm Approach.

.- Deep Learning Based Detection of Suspicious Activity in Outdoor Home Surveillance.

.- Detecting Abnormal Authentication Delays in Identity and Access Management using Machine Learning.

.- SIP DDoS SIP Framework for DDoS Intrusion Detection based on Recurrent Neural Networks.

.- Deep Reinforcement Learning for multiobjective Scheduling in Industry 5.0 Reconfigurable Manufacturing Systems.

.- Toward a digital twin IoT for the validation of AI algorithms in smart-city applications.

.- Data Summarization for Federated Learning.

.- ML Comparison Countermeasure prediction using radio internal metrics for BLE radio.

.- Towards to Road Profiling with Cooperative Intelligent TransportSystems.

.- Study of Masquerade Attack in VANETs with machine learning.

.- Detecting Virtual Harassment in Social Media Using Machine Learning.

.- Leverage data security policies complexity for users an end to end storage service management in the Cloud based on ABAC attributes.

.- Machine Learning to Model the Risk of Alteration of historical buildings.

.- A novel Image Encryption Technique using Modified Grain.

.- Transformation Network Model for Ear Recognition.

.- Cybersecurity analytics: Toward an efficient ML-based Network Intrusion Detection System (NIDS).

Erscheinungsdatum
Reihe/Serie Lecture Notes in Computer Science
Zusatzinfo X, 286 p. 116 illus., 90 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Netzwerke
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte 5G Networks • Artificial Intelligence • classification for networks • Experimental evaluation • intelligent cloud support communications • machine learning algorithms • machine learning approaches • network slicing optimization • pattern recognition • Performance Analysis • Resource Allocation • security • wireless networks
ISBN-10 3-031-59932-2 / 3031599322
ISBN-13 978-3-031-59932-3 / 9783031599323
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85