Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Extreme Value Theory for Time Series - Thomas Mikosch, Olivier Wintenberger

Extreme Value Theory for Time Series

Models with Power-Law Tails
Buch | Hardcover
XVI, 766 Seiten
2024 | 2024
Springer International Publishing (Verlag)
978-3-031-59155-6 (ISBN)
CHF 249,95 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

This book deals with extreme value theory for univariate and multivariate time series models characterized by power-law tails. These include the classical ARMA models with heavy-tailed noise and financial econometrics models such as the GARCH and stochastic volatility models.

Rigorous descriptions of power-law tails are provided through the concept of regular variation. Several chapters are devoted to the exploration of regularly varying structures.

The remaining chapters focus on the impact of heavy tails on time series, including the study of extremal cluster phenomena through point process techniques.

A major part of the book investigates how extremal dependence alters the limit structure of sample means, maxima, order statistics, sample autocorrelations. 

This text illuminates the theory through hundreds of examples and as many graphs showcasing its applications to real-life financial and simulated data.

The book can serve as a text for PhD and Master courses on applied probability, extreme value theory, and time series analysis.

It is a unique reference source for the heavy-tail modeler. Its reference quality is enhanced by an exhaustive bibliography, annotated by notes and comments making the book broadly and easily accessible.

 

 

Introduction.- Part 1 Regular variation of distributions and processes.- 2 The iid univariate benchmark.- 3 Regularly varying random variables and vectors.- 4 Regularly varying time series.- 5 Examples of regularly varying stationary processes.- Part 2 Point process convergence and cluster phenomena of time series.- 6 Clusters of extremes.- 7 Point process convergence for regularly varying sequences.- 8 Applications of point process convergence.- Part 3 Infinite variance central limit theory.- 9 Infinite-variance central limit theory.- 10 Self-normalization, sample autocorrelations and the extremogram.- Appendix A Point processes.- Appendix B Univariate regular variation.- Appendix C Vague convergence.- Appendix D Tools.- Appendix E Multivariate regular variation - supplementary results.- Appendix F Heavy-tail large deviations for sequences of independent random variables and vectors, and their applications.-references.- index.- List of abbreviations and symbols.

Erscheinungsdatum
Reihe/Serie Springer Series in Operations Research and Financial Engineering
Zusatzinfo XVI, 766 p. 83 illus., 81 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte big jump principle • Cluster Phenomena • heavy-tail phenomena • Modeling extremal events • Time Series
ISBN-10 3-031-59155-0 / 3031591550
ISBN-13 978-3-031-59155-6 / 9783031591556
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Jim Sizemore; John Paul Mueller

Buch | Softcover (2024)
Wiley-VCH (Verlag)
CHF 39,20
Beschreibende Statistik – Wahrscheinlichkeitsrechnung – Schließende …

von Günther Bourier

Buch | Softcover (2024)
Springer Fachmedien Wiesbaden GmbH (Verlag)
CHF 53,15