Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Finite Groups Which Are Almost Groups of Lie Type in Characteristic $/mathbf {p}$ - Chris Parker, Gerald Pientka, Andreas Seidel, Gernot Stroth

Finite Groups Which Are Almost Groups of Lie Type in Characteristic $/mathbf {p}$

Buch | Softcover
182 Seiten
2024
American Mathematical Society (Verlag)
978-1-4704-6729-6 (ISBN)
CHF 137,45 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
We investigate finite K{2,p}-groups G which have a subgroup H ? G such that K ? H = NG(K) ? Aut(K) for K a simple group of Lie type in characteristic p, and |G : H| is coprime to p. If G is of local characteristic p, then G is called almost of Lie type in characteristic p.
Let p be a prime. In this paper we investigate finite K{2,p}-groups G which have a subgroup H ? G such that K ? H = NG(K) ? Aut(K) for K a simple group of Lie type in characteristic p, and |G : H| is coprime to p. If G is of local characteristic p, then G is called almost of Lie type in characteristic p. Here G is of local characteristic p means that for all nontrivial p-subgroups P of G, and Q the largest normal p-subgroup in NG(P) we have the containment CG(Q) ? Q. We determine details of the structure of groups which are almost of Lie type in characteristic p. In particular, in the case that the rank of K is at least 3 we prove that G = H. If H has rank 2 and K is not PSL3(p) we determine all the examples where G = H. We further investigate the situation above in which G is of parabolic characteristic p. This is a weaker assumption than local characteristic p. In this case, especially when p ? {2, 3}, many more examples appear. In the appendices we compile a catalogue of results about the simple groups with proofs. These results may be of independent interest.

Chris Parker, University of Birmingham, United Kingdom. Gerald Pientka, Halle, Germany. Andreas Seidel, Magdeburg, Germany. Gernot Stroth, Universitat Halle-Wittenberg, Germany.

Erscheinungsdatum
Reihe/Serie Memoirs of the American Mathematical Society ; Volume: 292 Number: 1452
Verlagsort Providence
Sprache englisch
Maße 178 x 254 mm
Gewicht 272 g
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 1-4704-6729-1 / 1470467291
ISBN-13 978-1-4704-6729-6 / 9781470467296
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Begriffe, Sätze und zahlreiche Beispiele in kurzen Lerneinheiten

von Christian Karpfinger

Buch | Softcover (2022)
Springer Spektrum (Verlag)
CHF 76,95