Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Architecting a Modern Data Warehouse for Large Enterprises - Anjani Kumar, Abhishek Mishra, Sanjeev Kumar

Architecting a Modern Data Warehouse for Large Enterprises (eBook)

Build Multi-cloud Modern Distributed Data Warehouses with Azure and AWS
eBook Download: PDF
2023 | First Edition
XV, 368 Seiten
Apress (Verlag)
979-8-8688-0029-0 (ISBN)
Systemvoraussetzungen
56,99 inkl. MwSt
(CHF 55,65)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Design and architect new generation cloud-based data warehouses using Azure and AWS. This book provides an in-depth understanding of how to build modern cloud-native data warehouses, as well as their history and evolution.

The book starts by covering foundational data warehouse concepts, and introduces modern features such as distributed processing, big data storage, data streaming, and processing data on the cloud. You will gain an understanding of the synergy, relevance, and usage data warehousing standard practices in the modern world of distributed data processing. The authors walk you through the essential concepts of Data Mesh, Data Lake, Lakehouse, and Delta Lake. And they demonstrate the services and offerings available on Azure and AWS that deal with data orchestration, data democratization, data governance, data security, and business intelligence.

After completing this book, you will be ready to design and architect enterprise-grade, cloud-based modern data warehouses using industry best practices and guidelines.

What You Will Learn

  • Understand the core concepts underlying modern data warehouses
  • Design and build cloud-native data warehouses
  • Gain a practical approach to architecting and building data warehouses on Azure and AWS
  • Implement modern data warehousing components such as Data Mesh, Data Lake, Delta Lake, and Lakehouse
  • Process data through pandas and evaluate your model's performance using metrics such as F1-score, precision, and recall
  • Apply deep learning to supervised, semi-supervised, and unsupervised anomaly detection tasks for tabular datasets and time series applications

Who This Book Is For

Experienced developers, cloud architects, and technology enthusiasts looking to build cloud-based modern data warehouses using Azure and AWS

Anjani Kumar is the Managing Director and Founder of MultiCloud4u, a rapidly growing startup that helps clients and partners seamlessly implement data-driven solutions for their digital businesses. With a background in computer science, Anjani began his career researching and developing multi-lingual systems that were powered by distributed processing and data synchronization across remote regions of India. He later collaborated with companies such as Mahindra Satyam, Microsoft, RBS, and Sapient to create data warehouses and other data-based systems that could handle high-volume data processing and transformation.

Abhishek Mishra is a Cloud Architect at a leading organization and has more than a decade and a half of experience building and architecting software solutions for large and complex enterprises across the globe. He has deep expertise in enabling digital transformations for his customers using the cloud and artificial intelligence.

Sanjeev Kumar heads up a global data and analytics practice at the leading and oldest multinational shoe company with headquarters in Switzerland. He has 19+ years of experience working for organizations modeling modern data solutions in multiple industries. He has consulted with some of the top multinational firms and enabled digital transformation for large enterprises using modern data warehouses in the cloud. He is an expert in multiple fields of modern data management and execution including data strategy, automation, data governance, architecture, metadata, modeling, business intelligence, data management, and analytics.
Design and architect new generation cloud-based data warehouses using Azure and AWS. This book provides an in-depth understanding of how to build modern cloud-native data warehouses, as well as their history and evolution.The book starts by covering foundational data warehouse concepts, and introduces modern features such as distributed processing, big data storage, data streaming, and processing data on the cloud. You will gain an understanding of the synergy, relevance, and usage data warehousing standard practices in the modern world of distributed data processing. The authors walk you through the essential concepts of Data Mesh, Data Lake, Lakehouse, and Delta Lake. And they demonstrate the services and offerings available on Azure and AWS that deal with data orchestration, data democratization, data governance, data security, and business intelligence. After completing this book, you will be ready to design and architect enterprise-grade, cloud-based modern data warehouses using industry best practices and guidelines.What You Will LearnUnderstand the core concepts underlying modern data warehousesDesign and build cloud-native data warehousesGain a practical approach to architecting and building data warehouses on Azure and AWSImplement modern data warehousing components such as Data Mesh, Data Lake, Delta Lake, and LakehouseProcess data through pandas and evaluate your model s performance using metrics such as F1-score, precision, and recallApply deep learning to supervised, semi-supervised, and unsupervised anomaly detection tasks for tabular datasets and time series applicationsWho This Book Is For Experienced developers, cloud architects, and technology enthusiasts looking to build cloud-based modern data warehouses using Azure and AWS
Erscheint lt. Verlag 11.1.2024
Zusatzinfo XV, 368 p. 146 illus.
Sprache englisch
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Netzwerke
Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Schlagworte AWS Glue • Azure Data Factory • Azure Synapse • Data Democratization • Data Lake • Data Mesh • Modern Data Warehouse • snowflake
ISBN-13 979-8-8688-0029-0 / 9798868800290
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 12,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Datenschutz und Sicherheit in Daten- und KI-Projekten

von Katharine Jarmul

eBook Download (2024)
O'Reilly (Verlag)
CHF 48,75