Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Spatial Linear Models for Environmental Data - Dale L. Zimmerman, Jay M. Ver Hoef

Spatial Linear Models for Environmental Data

Buch | Hardcover
416 Seiten
2024
Chapman & Hall/CRC (Verlag)
978-0-367-18334-9 (ISBN)
CHF 134,40 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Many applied researchers equate spatial statistics with prediction or mapping, but this book naturally extends linear models, which includes regression and ANOVA as pillars of applied statistics, to achieve a more comprehensive treatment of the analysis of spatially autocorrelated data. Spatial Linear Models for Environmental Data, aimed at students and professionals with a master’s level training in statistics, presents a unique, applied, and thorough treatment of spatial linear models within a statistics framework. Two subfields, one called geostatistics and the other called areal or lattice models, are extensively covered. Zimmerman and Ver Hoef present topics clearly, using many examples and simulation studies to illustrate ideas. By mimicking their examples and R code, readers will be able to fit spatial linear models to their data and draw proper scientific conclusions.

Topics covered include:



Exploratory methods for spatial data including outlier detection, (semi)variograms, Moran’s I, and Geary’s c.
Ordinary and generalized least squares regression methods and their application to spatial data.
Suitable parametric models for the mean and covariance structure of geostatistical and areal data.
Model-fitting, including inference methods for explanatory variables and likelihood-based methods for covariance parameters.
Practical use of spatial linear models including prediction (kriging), spatial sampling, and spatial design of experiments for solving real world problems.

All concepts are introduced in a natural order and illustrated throughout the book using four datasets. All analyses, tables, and figures are completely reproducible using open-source R code provided at a GitHub site. Exercises are given at the end of each chapter, with full solutions provided on an instructor’s FTP site supplied by the publisher.

Dale L. Zimmerman is Professor of Statistics at the University of Iowa, and Jay M. Ver Hoef is Senior Scientist and Statistician, Alaska Fisheries Science Center, NOAA Fisheries. Both are Fellows of the American Statistical Association and winners of that association’s Section for Statistics and the Environment Distinguished Achievement Award.

Preface 1. Introduction 2. An Introduction to Covariance Structures for Spatial Linear Models 3. Exploratory Spatial Data Analysis 4. Provisional Estimation of the Mean Structure by Ordinary Least Squares 5. Generalized Least Squares Estimation of the Mean Structure 6. Parametric Covariance Structures for Geostatistical Models 7. Parametric Covariance Structures for Spatial-Weights Linear Models 8. Likelihood-Based Inference 9. Spatial Prediction 10. Spatial Sampling Design 11. Analysis and Design of Spatial Experiments 12. Extensions Appendix A: Some Matrix Results

Erscheinungsdatum
Reihe/Serie Chapman & Hall/CRC Applied Environmental Statistics
Zusatzinfo 54 Tables, black and white; 25 Line drawings, color; 72 Line drawings, black and white; 1 Halftones, color; 26 Illustrations, color; 72 Illustrations, black and white
Sprache englisch
Maße 178 x 254 mm
Gewicht 993 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Mathematik
Technik Umwelttechnik / Biotechnologie
Weitere Fachgebiete Land- / Forstwirtschaft / Fischerei
ISBN-10 0-367-18334-X / 036718334X
ISBN-13 978-0-367-18334-9 / 9780367183349
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Daten importieren, bereinigen, umformen und visualisieren

von Hadley Wickham; Mine Çetinkaya-Rundel …

Buch | Softcover (2024)
O'Reilly (Verlag)
CHF 76,85