Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Neural Information Processing -

Neural Information Processing

30th International Conference, ICONIP 2023, Changsha, China, November 20–23, 2023, Proceedings, Part XV
Buch | Softcover
513 Seiten
2023
Springer Verlag, Singapore
978-981-99-8183-0 (ISBN)
CHF 127,30 inkl. MwSt
  • Versand in 10-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
The nine-volume set constitutes the refereed proceedings of the 30th International Conference on Neural Information Processing, ICONIP 2023, held in Changsha, China, in November 2023.  
The 1274 papers presented in the proceedings set were carefully reviewed and selected from 652 submissions. 
The ICONIP conference aims to provide a leading international forum for researchers, scientists, and industry professionals who are working in neuroscience, neural networks, deep learning, and related fields to share their new ideas, progress, and achievements.

​Applications.- Towards Deeper and Better Multi-view Feature Fusion for 3D Semantic Segmentation.- RF-Based Drone Detection and Identification with Deep Neural Network: Review and Case Study.- Effective skill learning on vascular robotic systems: Combining offline and online reinforcement learning.- Exploring Efficient-Tuned Learning Audio Representation Method from BriVL.- Can You Really Reason: A Novel Framework for Assessing Natural Language Reasoning Datasets and Models.- End-to-End Urban Autonomous Navigation with Decision Hindsight.- Identifying Self-Admitted Technical Debt with Context-based Ladder Network.- NDGR: A Noise Divide and Guided Re-labeling Framework for Distantly Supervised Relation Extraction.- Customized Anchors Can Better Fit the Target in Siamese Tracking.- Can We Transfer Noise Patterns? A Multi-environment Spectrum Analysis Model Using Generated Cases.- Progressive Supervision for Tampering Localization in Document Images.- Multi-granularity Deep Vulnerability Detection using Graph Neural Networks.- Rumor Detection with Supervised Graph Contrastive Regularization.- A Meta Learning-based Training Algorithm for Robust Dialogue Generation.- Effects of Brightness and Class-unbalanced Dataset on CNN Model Selection and Image Classification considering Autonomous Driving.- HANCaps: A Two-Channel Deep Learning Framework for Fake News Detection in Thai.- Pre-trained Financial Model for Price Movement Forecasting.- Impulsion of Movie’s Content-Based Factors in Multi-Modal Movie Recommendation System.- Improving Transferbility of Adversarial Attack on Face Recognition with Feature Attention.- Dendritic Neural Regression Model Trained by Chicken Swarm Optimization Algorithm for Bank Customer Churn Prediction.- BERT-LBIA: A BERT-Based Late Bidirectional Interaction Attention Model for Legal Case Retrieval.- Learning Discriminative Semantic and Multi-View Context for Domain Adaptive Few-shot Relation Extraction.- ML2FNet: A Simple but Effective Multi-Level Feature Fusion Network for Document-Level Relation Extraction.- Implicit Clothed Human Reconstruction Based on Self-attention and SDF.- Privacy-Preserving Federated Compressed Learning Against Data Reconstruction Attacks Based on Secure Data.- An Attack Entity Deducing Model for Attack Forensics.- Semi-supervised classification on data streams with recurring concept drift based on conformal prediction.- Zero-shot Relation Triplet Extraction via Retrieval-Augmented Synthetic Data Generation.- Parallelizable Simple Recurrent Units with Hierarchical Memory.- Enhancing Legal Judgment Prediction with Attentional Networks Utilizing Legal Event Types.- MOOCs Dropout Prediction via Classmates Augmented Time-Flow Hybrid Network.- Multiclass Classification and Defect Detection of Steel tube using modified YOLO.- GACE: Learning Graph-Based Cross-Page Ads Embedding For Click-Through Rate Prediction.- TEZARNet : TEmporal Zero-shot Activity Recognition Network.- Tigrinya OCR: Applying CRNN for Text Recognition.- Generating Pseudo-Labels for Car Damage Segmentation using Deep Spectral Method.- Two-Stage Graph Convolutional Networks for Relation Extraction.- Multi-vehicle Platoon Overtaking Using NoisyNet Multi-Agent Deep Q-Learning Network.               

Erscheinungsdatum
Reihe/Serie Communications in Computer and Information Science
Zusatzinfo 125 Illustrations, color; 32 Illustrations, black and white; XX, 513 p. 157 illus., 125 illus. in color.
Verlagsort Singapore
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte affective and cognitive learning • Big Data • Bioinformatics • brain-machine interface • Computational Finance • Computational Intelligence • control and decision theory • Data Mining • Human-Computer interaction • Image processing & computer vision • machine learning • Natural Language Processing • neural data analysis • neural network • Neurodynamics • Optimization • pattern recognition • Recommender Systems • Robotics and control • Social Networks
ISBN-10 981-99-8183-2 / 9819981832
ISBN-13 978-981-99-8183-0 / 9789819981830
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85